37 research outputs found

    Angiogenesis as a Mechanism of Resistance to CAMKK2 Inhibition in Prostate Cancer

    Get PDF
    https://openworks.mdanderson.org/sumexp22/1083/thumbnail.jp

    Towards a cell-based chemo receiver for artificial insect olfaction

    Get PDF
    Infochemical communication is ubiquitous amongst all living organisms, and particularly important in insects. Because smell being the most common basic means of chemical communication, infochemical blends must be constantly decoded in order to proclaim their readiness to mate, to mark out territorial boundaries, to warn off intruders and predators or, in some cases, to locate food or predators with millisecond precision. The central challenge of the thesis was to mimic nature in both cellular and molecular levels on to a technological platform that aids in the development of a new class of technology employing chemicals alone to communicate over space and time. This thesis describes a body of work conducted in the development of a miniaturised, smart and label-free cell-based chemoreceiver for artificial insect olfaction, as part of the development of a novel biomimetic infochemical communication system. A surface acoustic wave based microsensor has been utilized to engineer and develop a chemoreceiver system that mimics the cellular and molecular mechanisms occurring during infochemical detection and decoding in insects. Successful recovery of ratiometric information with the aid of polymer-based gas-phase measurements, established the concept of chemical communication. Thus, small scale, high-throughput infochemical communication has been realized by a combination of precise spatiotemporal signal generation using fruit volatiles and insect sex pheromones with highly sensitive detection and signal processing. This was followed by the investigation of the feasibility of using the prototype cell-based biosensor system in a static mode for artificial insect olfaction applications, mimicking the cellular detection in the receptor/antenna apparatus of insects. Finally, as part of the development of a compact and low-power portable chemoreceiver system, the discrete sensor drive and interface circuitry was deployed in an analogue VLSI chip, thereby overcoming the associated measurement complexity and equipment cost, in addition to extending the reach and functionality of point of use technologie

    Dual high-frequency Surface Acoustic Wave Resonator for ultrafine particle sensing

    Get PDF

    High frequency surface acoustic wave resonator-based sensor for particulate matter detection

    Get PDF
    This paper describes the characterization of high frequency Surface Acoustic Wave Resonator-based (SAWR) sensors, for the detection of micron and sub-micron sized particles. The sensor comprises two 262 MHz ST-cut quartz based Rayleigh wave SAWRs where one is used for particle detection and the other as a reference. Electro-acoustic detection of different sized particles shows a strong relationship between mass sensitivity (Δf/Δm) and particle diameter (Dp). This enables frequency-dependent SAWR sensitivity to be tailored to the size of particles, thus making these types of sensors good candidates for PM10, PM2.5 and ultrafine particle (UFP) detection. Our initial characterisation demonstrated a typical SAWR frequency shift of 60 Hz in response to a deposition of ca. 0.21 ng of 0.75 μm-sized gold particles (∼50 particles) on sensor’s surface. Sensor responses to different size particles, such as ∼30 μm diameter silicon, gold (diameters of ∼0.75 μm and ∼20 μm), ∼8 μm fine sugar, PTFE (∼1 μm and ∼15 μm), ∼4 μm talcum powder, and ∼2 μm molybdenum powder were evaluated, and an average mass sensitivity of 275 Hz/ng was obtained. Based on the results obtained in this study we believe that acoustic wave technology has great potential for application in airborne particle detection. Moreover, acoustic resonator devices can be integrated with CMOS interface circuitry to obtain sensitive, robust, low-power and low-cost particle detectors for variety of applications including outdoor environmental monitoring

    Particle Sensor Using Solidly Mounted Resonators

    Get PDF
    This paper describes the development of a novel particle sensing system employing zinc oxide based solidly mounted resonator (SMR) devices for the detection of airborne fine particles (i.e., PM2.5 and PM10). The system operates in a dual configuration in which two SMR devices are driven by Colpitts-type oscillators in a differential mode. Particles are detected by the frequency shift caused by the mass of particles present on one resonator with while the other acts as a reference channel. Experimental validation of the system was performed inside an environmental chamber using a dust generator with the particles of known size and concentration. A sensor sensitivity of 4.6 Hz per μg/m3 was demonstrated for the SMRs resonating at a frequency of 970 MHz. Our results demonstrate that the SMR-based system has the potential to be implemented in CMOS technology as a low-cost, miniature smart particle detector for the real-time monitoring of airborne particles

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Rockport Comprehensive Plan

    Get PDF
    This document was developed and prepared by Texas Target Communities (TxTC) at Texas A&M University in partnership with the City of Rockport, Texas Sea Grant, Texas A&M University - Corpus Christi, Texas A&M University - School of Law and Texas Tech University.Founded in 1871, the City of Rockport aims to continue growing economically and sustainably. Rockport is a resilient community dedicated to sustainable growth and attracting businesses to the area. Rockport is a charming town that offers a close-knit community feel and is a popular tourist destination for marine recreation, fairs, and exhibitions throughout the year. The Comprehensive Plan 2020-2040 is designed to guide the city of Rockport for its future growth. The guiding principles for this planning process were Rockport's vision statement and its corresponding goals, which were crafted by the task force. The goals focus on factors of growth and development including public participation, development considerations, transportation, community facilities, economic development, parks, and housing and social vulnerability
    corecore