820 research outputs found

    Bathymetric map of the Gulf of Cadiz, NE Atlantic Ocean: The SWIM multibeam compilation

    Get PDF
    Marine Technology Workshop (Martech05), 17-18 November 2005, Vilanova i la Geltrú, Barcelona.-- 2 pages, 1 figurePeer Reviewe

    Variability in intermediate water circulation of the western Tyrrhenian margin (NE Corsica) over the past 56 kyr

    Get PDF
    The Marion Dufrene core MD01-2472 made of hemipelagic fine-grained sediments (silt and clays) was collected at 501 m depth on the East Corsica continental slope in 2001 and studied in detail in its 12 uppermost meters. The correlation between sedimentological parameters (Sortable Silt), isotopic data and 14C dating allowed to establish the chronology of main climate events (Younger Dryas/YD, Bölling-Alleröd/B-A, Heinrich events/HS) on this record and to evaluate the impact of major climate oscillations on bottom water condition variability. The sea temperature changes are identified thanks to the planktonic foraminifera assemblages. HS are marked by planktonic foraminifers with peaks of the polar species N. pachyderma (left-coiling), whilst interstadials are marked by warm planktonics that become very abundant during the B-A and Holocene. The occurrence of reworked ostracod species (originating from the continental shelf) and the presence of shallow water Elphidium/Ammonia benthic foraminifera are used to estimate the degree of along-slope transport at the core site. This has revealed two intervals of along-slope transport also associated with coarse-grained contourites, deposited during the YD and HS2 episodes. Intervals with Krithe spp. (ostracod), C. wuellerstorfi (benthic foraminifera) indicate bottom water oxygenation during stadials, whereas interstadials are typified by A. acuminata and Paracypris sp (ostracods) indicating low oxygenated environments. The Last Glacial Maximum is dominated by the planktonic foraminifer T. quinqueloba suggesting high surface primary productivity associated with the establishment of mestrophic bottom conditions. During the Holocene, benthic assemblages indicate oligo-mesotrophic conditions and weak hydrodynamic bottom regime. We hypothesize that there is relationship between the Levantine Intermediate Water (LIW) intensification during cold rapid climate events and benthic fauna assemblages due to changes in: 1) bottom water ventilation, corresponding to a significant reinforcement of the LIW velocity, and 2) the export of nutrients (generating changes in trophic conditions) and/or sediment particles by bottom currents (contributing to the formation of contourites)

    Recent climatic and anthropogenic imprints on lacustrine systems in the Pyrenean Mountains inferred from minerogenic and organic clastic supply (Vicdessos valley, Pyrenees, France)

    Get PDF
    High-resolution seismic profiling has been combined with geochemical analyses of both watershed samples and five lacustrine cores retrieved from two natural lacustrine basins of glacial origin: Lake Majeur and Lake Sigriou (1630 m a.s.l. and 1995 m a.s.l., respectively, Eastern French Pyrenees). Identifying specific minerogenic and organic markers of autochthonous and allochthonous supply, data allow documenting past climatic and anthropogenic pressures. Over the past century, the lacustrine sediment of Lake Majeur has been essentially composed of algae, drastically contrasting with the natural sedimentary infill of the basin, mainly resulting from soil erosion from the mid–late Holocene. Since ad 1907, the Lake Majeur has been used for hydroelectricity production. Human-induced lake-level regulations, affecting up to 37% of the lacustrine surface, have increased by fourfold the accumulation rate of the lake and favoured water enrichment. Rubidium abundance within the lacustrine sediments of the two lakes reflects the mid–late Holocene palaeohydrology. After dam construction in ad 1907, greater quantities of rubidium found in Lake Majeur sedimentary infills indicate drier climatic periods, such as from ad 1975 to ad 1982, during which water reservoirs were particularly in demand. Inversely, before the dam was built, rubidium fluctuations were correlated with wetter conditions and hydrological events were recorded as sandy layers deposited by canyon reactivation, synchronous with European climatic deterioration phases. We notably document that the Mediaeval Climate Anomaly was interrupted by some humid periods dated c. ad 940, ad 1080, ad 1100 and ad 1250. We also date the onset of the ‘Little Ice Age’ c. ad 1360 and identify that this period was wetter after c. ad 1500

    Genome-wide computational identification of WG/GW Argonaute-binding proteins in Arabidopsis

    Get PDF
    Domains in Arabidopsis proteins NRPE1 and SPT5-like, composed almost exclusively of repeated motifs in which only WG or GW sequences and an overall amino-acid preference are conserved, have been experimentally shown to bind multiple molecules of Argonaute (AGO) protein(s). Domain swapping between the WG/GW domains of NRPE1 and the human protein GW182 showed a conserved function. As classical sequence alignment methods are poorly-adapted to detect such weakly-conserved motifs, we have developed a tool to carry out a systematic analysis to identify genes potentially encoding AGO-binding GW/WG proteins. Here, we describe exhaustive analysis of the Arabidopsis genome for all regions potentially encoding proteins bearing WG/GW motifs and consider the possible role of some of them in AGO-dependent mechanisms. We identified 20 different candidate WG/GW genes, encoding proteins in which the predicted domains range from 92aa to 654aa. These mostly correspond to a limited number of families: RNA-binding proteins, transcription factors, glycine-rich proteins, translation initiation factors and known silencing-associated proteins such as SDE3. Recent studies have argued that the interaction between WG/GW-rich domains and AGO proteins is evolutionarily conserved. Here, we demonstrate by an in silico domain-swapping simulation between plant and mammalian WG/GW proteins that the biased amino-acid composition of the AGO-binding sites is conserved

    Does Observation of Postural Imbalance Induce a Postural Reaction?

    Get PDF
    Import JabRef | WosArea Life Sciences and Biomedicine - Other TopicsInternational audienceBackground: Several studies bring evidence that action observation elicits contagious responses during social interactions. However automatic imitative tendencies are generally inhibited and it remains unclear in which conditions mere action observation triggers motor behaviours. In this study, we addressed the question of contagious postural responses when observing human imbalance. Methodology/Principal Findings: We recorded participants' body sway while they observed a fixation cross (control condition), an upright point-light display of a gymnast balancing on a rope, and the same point-light display presented upside down. Our results showed that, when the upright stimulus was displayed prior to the inverted one, centre of pressure area and antero-posterior path length were significantly greater in the upright condition compared to the control and upside down conditions. Conclusions/Significance: These results demonstrate a contagious postural reaction suggesting a partial inefficiency of inhibitory processes. Further, kinematic information was sufficient to trigger this reaction. The difference recorded between the upright and upside down conditions indicates that the contagion effect was dependent on the integration of gravity constraints by body kinematics. Interestingly, the postural response was sensitive to habituation, and seemed to disappear when the observer was previously shown an inverted display. The motor contagion recorded here is consistent with previous work showing vegetative output during observation of an effortful movement and could indicate that lower level control facilitates contagion effects

    Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    Get PDF
    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology

    Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The literature suggests a beneficial effect of motor imagery (MI) if combined with physical practice, but detailed descriptions of MI training session (MITS) elements and temporal parameters are lacking. The aim of this review was to identify the characteristics of a successful MITS and compare these for different disciplines, MI session types, task focus, age, gender and MI modification during intervention.</p> <p>Methods</p> <p>An extended systematic literature search using 24 databases was performed for five disciplines: Education, Medicine, Music, Psychology and Sports. References that described an MI intervention that focused on motor skills, performance or strength improvement were included. Information describing 17 MITS elements was extracted based on the PETTLEP (physical, environment, timing, task, learning, emotion, perspective) approach. Seven elements describing the MITS temporal parameters were calculated: study duration, intervention duration, MITS duration, total MITS count, MITS per week, MI trials per MITS and total MI training time.</p> <p>Results</p> <p>Both independent reviewers found 96% congruity, which was tested on a random sample of 20% of all references. After selection, 133 studies reporting 141 MI interventions were included. The locations of the MITS and position of the participants during MI were task-specific. Participants received acoustic detailed MI instructions, which were mostly standardised and live. During MI practice, participants kept their eyes closed. MI training was performed from an internal perspective with a kinaesthetic mode. Changes in MI content, duration and dosage were reported in 31 MI interventions. Familiarisation sessions before the start of the MI intervention were mentioned in 17 reports. MI interventions focused with decreasing relevance on motor-, cognitive- and strength-focused tasks. Average study intervention lasted 34 days, with participants practicing MI on average three times per week for 17 minutes, with 34 MI trials. Average total MI time was 178 minutes including 13 MITS. Reporting rate varied between 25.5% and 95.5%.</p> <p>Conclusions</p> <p>MITS elements of successful interventions were individual, supervised and non-directed sessions, added after physical practice. Successful design characteristics were dominant in the Psychology literature, in interventions focusing on motor and strength-related tasks, in interventions with participants aged 20 to 29 years old, and in MI interventions including participants of both genders. Systematic searching of the MI literature was constrained by the lack of a defined MeSH term.</p

    Spatial Learning and Action Planning in a Prefrontal Cortical Network Model

    Get PDF
    The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates

    Initial sequencing and analysis of the human genome

    Full text link
    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62798/1/409860a0.pd
    corecore