99 research outputs found
Hypothyroidism in rats decreases peripheral glucose utilisation, a defect partially corrected by central leptin infusion
Aims/hypothesis: The aims of this work were to determine the effect of hypothyroidism on insulin-stimulated glucose turnover and to unravel the potential mechanisms involved in such an effect. Methods: Hypothyroidism was induced by administration of propylthiouracil, with partial T4 substitution. Euglycaemic-hyperinsulinaemic clamps, associated with the labelled 2-deoxy-d-glucose technique for measuring tissue-specific glucose utilisation, were used. To assess a possible involvement of leptin in the modulation of glucose metabolism by hypothyroidism, leptin was infused intracerebroventricularly for 6 days. A group of leptin-infused rats was treated with rT3 to determine a potential role of T3 in mediating the leptin effects. Results: Compared with euthyroid rats, hypothyroid animals exhibited decreased overall glucose turnover and decreased glucose utilisation indices in skeletal muscle and adipose tissue. Leptinaemia in hypothyroid rats was lower while resistin mRNA expression in adipose tissue was higher than in euthyroid animals. Intracerebroventricular leptin infusion in hypothyroid rats partially restored overall, muscle and adipose tissue insulin-stimulated glucose utilisation and improved the reduced glycaemic response observed during insulin tolerance tests. The leptin effects were due neither to the observed increase in plasma T3 levels nor to changes in the high adipose tissue resistin expression of hypothyroid rats. The administration of leptin to hypothyroid animals was accompanied by increased expression of muscle and adipose tissue carnitine palmitoyl transferases, decreased plasma NEFA levels and reduced muscle triglyceride content. Conclusions/interpretation: Hypothyroidism is characterised by decreased insulin responsiveness, partly mediated by an exaggerated glucose-fatty acid cycle that is partly alleviated by intracerebroventricular leptin administratio
Interleukin-1 receptor antagonist is upregulated during diet-induced obesity and regulates insulin sensitivity in rodents
Aims/hypothesis: The IL-1 receptor antagonist (IL-1Ra) is an anti-inflammatory cytokine known to antagonise the actions of IL-1. We have previously shown that IL-1Ra is markedly upregulated in the serum of obese patients, is correlated with BMI and insulin resistance, and is overexpressed in the white adipose tissue (WAT) of obese humans. The aim of this study was to examine the role of IL-1Ra in the regulation of glucose homeostasis in rodents. Methods: We assessed the expression of genes related to IL-1 signalling in the WAT of mice fed a high-fat diet, as well as the effect of Il1rn (the gene for IL-1Ra) deletion and treatment with IL-1Ra on glucose homeostasis in rodents. Results: We show that the expression of Il1rn and the gene encoding the inhibitory type II IL-1 receptor was upregulated in diet-induced obesity. The blood insulin:glucose ratio was significantly lower in Il1rn β/β animals, which is compatible with an increased sensitivity to insulin, reinforced by the fact that the insulin content and pancreatic islet morphology of Il1rn β/β animals were normal. In contrast, the administration of IL-1Ra to normal rats for 5days led to a decrease in the whole-body glucose disposal due to a selective decrease in muscle-specific glucose uptake. Conclusions/interpretation: The expression of genes encoding inhibitors of IL-1 signalling is upregulated in the WAT of mice with diet-induced obesity, and IL-1Ra reduces insulin sensitivity in rats through a muscle-specific decrease in glucose uptake. These results suggest that the markedly increased levels of IL-1Ra in human obesity might contribute to the development of insulin resistanc
Long-term home cage activity scans reveal lowered exploratory behaviour in symptomatic female Rett mice
<p>Numerous experimental models have been developed to reiterate endophenotypes of Rett syndrome, a neurodevelopmental disorder with a multitude of motor, cognitive and vegetative symptoms. Here, female Mecp2Stop mice [1] were characterised at mild symptomatic conditions in tests for anxiety (open field, elevated plus maze) and home cage observation systems for food intake, locomotor activity and circadian rhythms.</p>
<p>Aged 8β9 months, Mecp2Stop mice presented with heightened body weight, lower overall activity in the open field, but no anxiety phenotype. Although home cage activity scans conducted in two different observation systems, PhenoMaster and PhenoTyper, confirmed normal circadian activity, they revealed severely compromised habituation to a novel environment in all parameters registered including those derived from a non-linear decay model such as initial exploration maximum, decay half-life of activity and span, as well as plateau. Furthermore, overall activity was significantly reduced in nocturnal periods due to reductions in both fast ambulatory movements, but also a slow lingering. In contrast, light-period activity profiles during which the amount of sleep was highest remained normal in Mecp2Stop mice.</p>
<p>These data confirm the slow and progressive development of Rett-like symptoms in female Mecp2Stop mice resulting in a prominent reduction of overall locomotor activity, while circadian rhythms are maintained. Alterations in the time-course of habituation may indicate deficiencies in cognitive processing.</p>
Role of AMP-Activated Protein Kinase in the Control of Appetite
AMP-activated protein kinase is a key enzyme in the regulation of energy metabolism. Its activation has pleiotropic effects in multiple tissues, including increased fatty acid oxidation, glucose uptake and glycolysis, as well as the inhibition of fatty acid and glycogen synthesis and gluconeogenesis, and stimulation of mitochondrial biogenesis. Recently, the AMP-activated protein kinase (AMPK) has also emerged as a regulator of appetite, contributing to the control of energy metabolism at both cell and the whole body levels. Pharmacological and genetic activation or inhibition of hypothalamic AMPK lead to increased or reduced food intake, respectively. AMPK appears to play a role in hypothalamic glucose and nutrient sensing and numerous studies have suggested a role for AMPK in mediating the orexigenic or anorexigenic effects of various endogenous and exogenous substances
Sensing of Fatty Acids for Octanoylation of Ghrelin Involves a Gustatory G-Protein
Ghrelin is an important regulator of energy--and glucose homeostasis. The octanoylation at Ser(3) is essential for ghrelin's biological effects but the mechanisms involved in the octanoylation are unknown. We investigated whether the gustatory G-protein, Ξ±-gustducin, and the free fatty acid receptors GPR40 and GPR120 are involved in the fatty acid sensing mechanisms of the ghrelin cell.Wild-type (WT) and Ξ±-gustducin knockout (gust(-/-)) mice were fed a glyceryl trioctanoate-enriched diet (OD) during 2 weeks. Ghrelin levels and gastric emptying were determined. Co-localization between GPR40, GPR120 and ghrelin or Ξ±-gustducin/Ξ±-transducin was investigated by immunofluorescence staining. The role of GPR120 in the effect of medium and long chain fatty acids on the release of ghrelin was studied in the ghrelinoma cell line, MGN3-1. The effect of the GPR40 agonist, MEDICA16, and the GPR120 agonist, grifolic acid, on ghrelin release was studied both in vitro and in vivo.Feeding an OD specifically increased octanoyl ghrelin levels in the stomach of WT mice but not of gust(-/-) mice. Gastric emptying was accelerated in WT but not in gust(-/-) mice. GPR40 was colocalized with desoctanoyl but not with octanoyl ghrelin, Ξ±-gustducin or Ξ±-transducin positive cells in the stomach. GPR120 only colocalized with ghrelin in the duodenum. Addition of octanoic acid or Ξ±-linolenic acid to MGN3-1 cells increased and decreased octanoyl ghrelin levels, respectively. Both effects could not be blocked by GPR120 siRNA. MEDICA16 and grifolic acid did not affect ghrelin secretion in vitro but oral administration of grifolic acid increased plasma ghrelin levels.This study provides the first evidence that Ξ±-gustducin is involved in the octanoylation of ghrelin and shows that the ghrelin cell can sense long- and medium-chain fatty acids directly. GPR120 but not GPR40 may play a role in the lipid sensing cascade of the ghrelin cell
Ghrelin and its potential in the treatment of eating/wasting disorders and cachexia
The gastrointestinal βhungerβ hormone ghrelin is the only known circulating peripheral molecule with the ability to decrease body fat utilization and to increase body weight gain. Accordingly, due to ghrelinβs effects to promote food intake while decreasing energy expenditure ghrelin may offer potential as a drug for treatment of eating/wasting disorders and cachexia. Therapeutic potential of ghrelin and ghrelin analogues to promote food intake and body weight gain was recently indicated in several clinical studies. The recent discovery of the ghrelin O-acyltransferase as the key enzyme responsible for ghrelin acylation has further deepened our understanding of ghrelin activation, thereby paving the way for more efficient targeting of the ghrelin pathway. Here, we summarize the current knowledge pertaining to the potential of the endogenous ghrelin system as a drug target for the treatment of eating/wasting disorders and cachexia
Unacylated Ghrelin Rapidly Modulates Lipogenic and Insulin Signaling Pathway Gene Expression in Metabolically Active Tissues of GHSR Deleted Mice
Background: There is increasing evidence that unacylated ghrelin (UAG) improves insulin sensitivity and glucose homeostasis; however, the mechanism for this activity is not fully understood since a UAG receptor has not been discovered. Methodology/Principal Findings: To assess potential mechanisms of UAG action in vivo, we examined rapid effects of UAG on genome-wide expression patterns in fat, muscle and liver of growth hormone secretagogue receptor (GHSR)-ablated mice using microarrays. Expression data were analyzed using Ingenuity Pathways Analysis and Gene Set Enrichment Analysis. Regulation of subsets of these genes was verified by quantitative PCR in an independent experiment. UAG acutely regulated clusters of genes involved in glucose and lipid metabolism in all three tissues, consistent with enhancement of insulin sensitivity. Conclusions/Significance: Fat, muscle and liver are central to the control of lipid and glucose homeostasis. UAG rapidly modulates the expression of metabolically important genes in these tissues in GHSR-deleted mice indicating a direct, GHSRindependent, action of UAG to improve insulin sensitivity and metabolic profile
Author response
AMP-activated protein kinase (AMPK) is a known regulator of whole-body energy homeostasis, but the downstream AMPK substrates mediating these effects are not entirely clear. AMPK inhibits fatty acid synthesis and promotes fatty acid oxidation by phosphorylation of acetyl-CoA carboxylase (ACC) 1 at Ser79 and ACC2 at Ser212. Using mice with Ser79Ala/Ser212Ala knock-in mutations (ACC DKI) we find that inhibition of ACC phosphorylation leads to reduced appetite in response to fasting or cold exposure. At sub-thermoneutral temperatures, ACC DKI mice maintain normal energy expenditure and thermogenesis, but fail to increase appetite and lose weight. We demonstrate that the ACC DKI phenotype can be mimicked in wild type mice using a ghrelin receptor antagonist and that ACC DKI mice have impaired orexigenic responses to ghrelin, indicating ACC DKI mice have a ghrelin signaling defect. These data suggest that therapeutic strategies aimed at inhibiting ACC phosphorylation may suppress appetite following metabolic stress
Ablations of Ghrelin and Ghrelin Receptor Exhibit Differential Metabolic Phenotypes and Thermogenic Capacity during Aging
mice are adaptive. mice.Our data therefore suggest that GHS-R ablation activates adaptive thermogenic function(s) in BAT and increases EE, thereby enabling the retention of a lean phenotype. This is the first direct evidence that the ghrelin signaling pathway regulates fat-burning BAT to affect energy balance during aging. This regulation is likely mediated through an as-yet-unidentified new ligand of GHS-R
- β¦