66 research outputs found

    Study of Higher Order Net-Particle Fluctuations at LHC Energies

    Get PDF

    Commissioning of the ALICE High-Level Trigger

    Get PDF
    A new era in experimental nuclear physics has begun with the start-up of the Large Hadron Collider at CERN and its dedicated heavy-ion detector system ALICE. Measuring the highest energy density ever produced in nucleus-nucleus collisions, the detector has been designed to study the properties of the created hot and dense medium, assumed to be a Quark-Gluon Plasma. Comprised of 18 high granularity sub-detectors, ALICE delivers data from a few million electronic channels of proton-proton and heavy-ion collisions. The produced data volume can reach up to 26 GByte/s for central Pb–Pb collisions at design luminosity of L = 1027 cm−2 s−1 , challenging not only the data storage, but also the physics analysis. A High-Level Trigger (HLT) has been built and commissioned to reduce that amount of data to a storable value prior to archiving with the means of data filtering and compression without the loss of physics information. Implemented as a large high performance compute cluster, the HLT is able to perform a full reconstruction of all events at the time of data-taking, which allows to trigger, based on the information of a complete event. Rare physics probes, with high transverse momentum, can be identified and selected to enhance the overall physics reach of the experiment. The commissioning of the HLT is at the center of this thesis. Being deeply embedded in the ALICE data path and, therefore, interfacing all other ALICE subsystems, this commissioning imposed not only a major challenge, but also a massive coordination effort, which was completed with the first proton-proton collisions reconstructed by the HLT. Furthermore, this thesis is completed with the study and implementation of on-line high transverse momentum triggers

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at √s = 2.76 TeV

    No full text
    The pT-differential production cross section of electrons from semileptonic decays of heavy-flavor hadrons has been measured at mid-rapidity in proton-proton collisions at s√=2.76 TeV in the transverse momentum range 0.5 < pT < 12 GeV/c with the ALICE detector at the LHC. The analysis was performed using minimum bias events and events triggered by the electromagnetic calorimeter. Predictions from perturbative QCD calculations agree with the data within the theoretical and experimental uncertainties

    Beauty production in pp collisions at √s = 2.76 TeV measured via semi-electronic decays

    No full text
    The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity |y|<0.8 and transverse momentum 1<pT<10 GeV/c, in pp collisions at s√= 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, σb→e=3.47±0.40(stat)+1.12−1.33(sys)±0.07(norm)ÎŒb, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total bbÂŻ production cross section, σbbÂŻ=130±15.1(stat)+42.1−49.8(sys)+3.4−3.1(extr)±2.5(norm)±4.4(BR)ÎŒb

    Heavy flavour decay muon production at forward rapidity in proton–proton collisions at √s=7 TeV

    No full text
    The production of muons from heavy flavour decays is measured at forward rapidity in proton–proton collisions at √s=7 TeV collected with the ALICE experiment at the LHC. The analysis is carried out on a data sample corresponding to an integrated luminosity Lint=16.5 nb−1. The transverse momentum and rapidity differential production cross sections of muons from heavy flavour decays are measured in the rapidity range 2.5<y<4, over the transverse momentum range 2<pt<12 GeV/c. The results are compared to predictions based on perturbative QCD calculations

    Production of inclusive ϒ(1S) and ϒ(2S) in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report on the production of inclusive ΄(1S) and ΄(2S) in p-Pb collisions at sNN−−−√=5.02 TeV at the LHC. The measurement is performed with the ALICE detector at backward (−4.46<ycms<−2.96) and forward (2.03<ycms<3.53) rapidity down to zero transverse momentum. The production cross sections of the ΄(1S) and ΄(2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of ΄(1S). A suppression of the inclusive ΄(1S) yield in p-Pb collisions with respect to the yield from pp collisions scaled by the number of binary nucleon-nucleon collisions is observed at forward rapidity but not at backward rapidity. The results are compared to theoretical model calculations including nuclear shadowing or partonic energy loss effects
    • 

    corecore