459 research outputs found

    Letter to RJM from Michael A. Telesca

    Get PDF

    Reconfigurable nanoelectronics using graphene based spintronic logic gates

    Full text link
    This paper presents a novel design concept for spintronic nanoelectronics that emphasizes a seamless integration of spin-based memory and logic circuits. The building blocks are magneto-logic gates based on a hybrid graphene/ferromagnet material system. We use network search engines as a technology demonstration vehicle and present a spin-based circuit design with smaller area, faster speed, and lower energy consumption than the state-of-the-art CMOS counterparts. This design can also be applied in applications such as data compression, coding and image recognition. In the proposed scheme, over 100 spin-based logic operations are carried out before any need for a spin-charge conversion. Consequently, supporting CMOS electronics requires little power consumption. The spintronic-CMOS integrated system can be implemented on a single 3-D chip. These nonvolatile logic circuits hold potential for a paradigm shift in computing applications.Comment: 14 pages (single column), 6 figure

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Monitoring Vegetation Phenological Cycles in Two Different Semi-Arid Environmental Settings Using a Ground-Based NDVI System: A Potential Approach to Improve Satellite Data Interpretation

    No full text
    In semi-arid environmental settings with sparse canopy covers, obtaining remotely sensed information on soil and vegetative growth characteristics at finer spatial and temporal scales than most satellite platforms is crucial for validating and interpreting satellite data sets. In this study, we used a ground-based NDVI system to provide continuous time series analysis of individual shrub species and soil surface characteristics in two different semi-arid environmental settings located in the Great Basin (NV, USA). The NDVI system was a dual channel SKR-1800 radiometer that simultaneously measured incident solar radiation and upward reflectance in two broadband red and near-infrared channels comparable to Landsat-5 TM band 3 and band 4, respectively. The two study sites identified as Spring Valley 1 site (SV1) and Snake Valley 1 site (SNK1) were chosen for having different species composition, soil texture and percent canopy cover. NDVI time-series of greasewood (Sarcobatus vermiculatus) from the SV1 site allowed for clear distinction between the main phenological stages of the entire growing season during the period from January to November, 2007. NDVI time series values were significantly different between sagebrush (Artemisia tridentata) and rabbitbrush (Chrysothamnus viscidiflorus) at SV1 as well as between the two bare soil types at the two sites. Greasewood NDVI from the SNK1 site produced significant correlations with chlorophyll index (r = 0.97), leaf area index (r = 0.98) and leaf xylem water potential (r = 0.93). Whereas greasewood NDVI from the SV1 site produced lower correlations (r = 0.89, r = 0.73), or non significant correlations (r = 0.32) with the same parameters, respectively. Total percent cover was estimated at 17.5% for SV1 and at 63% for SNK1. Results from this study indicated the potential capabilities of using this ground-based NDVI system to extract spatial and temporal details of soil and vegetation optical properties not possible with satellite derived NDVI
    corecore