34 research outputs found

    Oligogenic Inheritance of Monoallelic TRIP11, FKBP10, NEK1, TBX5, and NBAS Variants Leading to a Phenotype Similar to Odontochondrodysplasia

    Get PDF
    Skeletal dysplasias are often well characterized, and only a minority of the cases remain unsolved after a thorough analysis of pathogenic variants in over 400 genes that are presently known to cause monogenic skeletal diseases. Here, we describe an 11-year-old Finnish girl, born to unrelated healthy parents, who had severe short stature and a phenotype similar to odontochondrodysplasia (ODCD), a monogenic skeletal dysplasia caused by biallelic TRIP11 variants. The family had previously lost a fetus due to severe skeletal dysplasia. Exome sequencing and bioinformatic analysis revealed an oligogenic inheritance of a heterozygous nonsense mutation in TRIP11 and four likely pathogenic missense variants in FKBP10, TBX5, NEK1, and NBAS in the index patient. Interestingly, all these genes except TBX5 are known to cause skeletal dysplasia in an autosomal recessive manner. In contrast, the fetus was found homozygous for the TRIP11 mutation, and achondrogenesis type IA diagnosis was, thus, molecularly confirmed, indicating two different skeletal dysplasia forms in the family. To the best of our knowledge, this is the first report of an oligogenic inheritance model of a skeletal dysplasia in a Finnish family. Our findings may have implications for genetic counseling and for understanding the yet unsolved cases of rare skeletal dysplasias.Peer reviewe

    Autosomal Recessive Osteogenesis Imperfecta Caused by a Novel Homozygous COL1A2 Mutation

    Get PDF
    Osteogenesis imperfecta (OI) is a skeletal dysplasia characterized by brittle bones and extraskeletal manifestations. The disease phenotype varies greatly. Most commonly, OI arises from monoallelic mutations in one of the two genes encoding type I collagen, COL1A1 and COL1A2 and is inherited as an autosomal dominant trait. Here, we describe a consanguineous family with autosomal recessive OI caused by a novel homozygous glycine substitution in COL1A2, NM_000089.3: c.604G > A, p.(Gly202Ser), detected by whole-genome sequencing. The index patient is a 31-year-old Greek woman with severe skeletal fragility. She had mild short stature, low bone mineral density of the lumbar spine and blue sclerae. She had sustained multiple long bone and vertebral fractures since childhood and had been treated with bisphosphonates for several years. She also had an affected sister with similar clinical manifestations. Interestingly, the parents and one sister, all carriers of the COL1A2 glycine mutation, did not have manifestations of OI. In summary, we report on autosomal recessive OI caused by a homozygous glycine-to-serine substitution in COL1A2, leading to severe skeletal fragility. The mutation carriers lacked OI manifestations. This family further expands the complex genetic spectrum of OI and underscores the importance of genetic evaluation for correct genetic counselling.Peer reviewe

    Novel form of rhizomelic skeletal dysplasia associated with a homozygous variant in GNPNAT1

    Get PDF
    Background Studies exploring molecular mechanisms underlying congenital skeletal disorders have revealed novel regulators of skeletal homeostasis and shown protein glycosylation to play an important role. Objective To identify the genetic cause of rhizomelic skeletal dysplasia in a consanguineous Pakistani family. Methods Clinical investigations were carried out for four affected individuals in the recruited family. Whole genome sequencing (WGS) was completed using DNA from two affected and two unaffected individuals from the family. Sequencing data were processed, filtered and analysed. In silico analyses were performed to predict the effects of the candidate variant on the protein structure and function. Small interfering RNAs (siRNAs) were used to study the effect of Gnpnat1 gene knockdown in primary rat chondrocytes. Results The patients presented with short stature due to extreme shortening of the proximal segments of the limbs. Radiographs of one individual showed hip dysplasia and severe platyspondyly. WGS data analyses identified a homozygous missense variant c.226G>A; p.(Glu76Lys) in GNPNAT1, segregating with the disease. Glucosamine 6-phosphate N-acetyltransferase, encoded by the highly conserved gene GNPNAT1, is one of the enzymes required for synthesis of uridine diphosphate N-acetylglucosamine, which participates in protein glycosylation. Knockdown of Gnpnat1 by siRNAs decreased cellular proliferation and expression of chondrocyte differentiation markers collagen type 2 and alkaline phosphatase, indicating that Gnpnat1 is important for growth plate chondrocyte proliferation and differentiation. Conclusions This study describes a novel severe skeletal dysplasia associated with a biallelic, variant in GNPNAT1. Our data suggest that GNPNAT1 is important for growth plate chondrogenesis.Peer reviewe

    Mosaic Deletions of Known Genes Explain Skeletal Dysplasias With High and Low Bone Mass

    Get PDF
    Mosaicism, a state in which an individual has two or more genetically distinct populations of cells in the body, can be difficult to detect because of either mild or atypical clinical presentation and limitations in the commonly used detection methods. Knowledge of the role of mosaicism is limited in many skeletal disorders, including osteopathia striata with cranial sclerosis (OSCS) and cleidocranial dysplasia (CCD). We used whole-genome sequencing (WGS) with coverage >40x to identify the genetic causes of disease in two clinically diagnosed patients. In a female patient with OSCS, we identified a mosaic 7-nucleotide frameshift deletion in exon 2 of AMER1, NM_152424.4:c.855_861del:p.(His285Glnfs*7), affecting 8.3% of the WGS reads. In a male patient with CCD, approximately 34% of the WGS reads harbored a 3710-basepair mosaic deletion, NC_000006.11:g.45514471_45518181del, starting in intron 8 of RUNX2 and terminating in the 3 ' untranslated region. Droplet digital polymerase chain reaction was used to validate these deletions and quantify the absolute level of mosaicism in each patient. Although constitutional variants in AMER1 and RUNX2 are a known cause of OSCS and CCD, respectively, the mosaic changes here reported have not been described previously. Our study indicates that mosaicism should be considered in unsolved cases of skeletal dysplasia and should be investigated with comprehensive and sensitive detection methods. (c) 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.Peer reviewe

    Rare Copy Number Variants in Array-Based Comparative Genomic Hybridization in Early-Onset Skeletal Fragility

    Get PDF
    Early-onset osteoporosis is characterized by low bone mineral density (BMD) and fractures since childhood or young adulthood. Several monogenic forms have been identified but the contributing genes remain inadequately characterized. In search for novel variants and novel candidate loci, we screened a cohort of 70 young subjects with mild to severe skeletal fragility for rare copy-number variants (CNVs). Our study cohort included 15 subjects with primary osteoporosis before age 30 years and 55 subjects with a pathological fracture history and low or normal BMD before age 16 years. A custom-made high-resolution comparative genomic hybridization array with enriched probe density in >1,150 genes important for bone metabolism and ciliary function was used to search for CNVs. We identified altogether 14 rare CNVs. Seven intronic aberrations were classified as likely benign. Five CNVs of unknown clinical significance affected coding regions of genes not previously associated with skeletal fragility (ETV1-DGKB, AGBL2, ATM, RPS6KL1-PGF, and SCN4A). Finally, two CNVs were pathogenic and likely pathogenic, respectively: a 4 kb deletion involving exons 1-4 of COL1A2 (NM_000089.3) and a 12.5 kb duplication of exon 3 in PLS3 (NM_005032.6). Although both genes have been linked to monogenic forms of osteoporosis, COL1A2 deletions are rare and PLS3 duplications have not been described previously. Both CNVs were identified in subjects with significant osteoporosis and segregated with osteoporosis within the families. Our study expands the number of pathogenic CNVs in monogenic skeletal fragility and shows the validity of targeted CNV screening to potentially pinpoint novel candidate loci in early-onset osteoporosis.Peer reviewe

    Mutations in Influenza A Virus (H5N1) and Possible Limited Spread, Turkey, 2006

    Get PDF
    We report mutations in influenza A virus (H5N1) strains associated with 2 outbreaks in Turkey. Four novel amino acid changes (Q447L, N556K, and R46K in RNA polymerase and S133A in hemagglutinin) were detected in virus isolates from 2 siblings who died

    Rare Copy Number Variants in Array-Based Comparative Genomic Hybridization in Early-Onset Skeletal Fragility

    Get PDF
    Early-onset osteoporosis is characterized by low bone mineral density (BMD) and fractures since childhood or young adulthood. Several monogenic forms have been identified but the contributing genes remain inadequately characterized. In search for novel variants and novel candidate loci, we screened a cohort of 70 young subjects with mild to severe skeletal fragility for rare copy-number variants (CNVs). Our study cohort included 15 subjects with primary osteoporosis before age 30 years and 55 subjects with a pathological fracture history and low or normal BMD before age 16 years. A custom-made high-resolution comparative genomic hybridization array with enriched probe density in >1,150 genes important for bone metabolism and ciliary function was used to search for CNVs. We identified altogether 14 rare CNVs. Seven intronic aberrations were classified as likely benign. Five CNVs of unknown clinical significance affected coding regions of genes not previously associated with skeletal fragility (ETV1-DGKB, AGBL2, ATM, RPS6KL1-PGF, and SCN4A). Finally, two CNVs were pathogenic and likely pathogenic, respectively: a 4 kb deletion involving exons 1–4 of COL1A2 (NM_000089.3) and a 12.5 kb duplication of exon 3 in PLS3 (NM_005032.6). Although both genes have been linked to monogenic forms of osteoporosis, COL1A2 deletions are rare and PLS3 duplications have not been described previously. Both CNVs were identified in subjects with significant osteoporosis and segregated with osteoporosis within the families. Our study expands the number of pathogenic CNVs in monogenic skeletal fragility and shows the validity of targeted CNV screening to potentially pinpoint novel candidate loci in early-onset osteoporosis

    Periodontal Ehlers-Danlos Syndrome Is Caused by Mutations in C1R and C1S, which Encode Subcomponents C1r and C1s of Complement

    Get PDF
    Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal-dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, joint hypermobility, and mild skin findings. A locus was mapped to an approximately 5.8 Mb region at 12p13.1 but no candidate gene was identified. In an international consortium we recruited 19 independent families comprising 107 individuals with pEDS to identify the locus, characterize the clinical details in those with defined genetic causes, and try to understand the physiological basis of the condition. In 17 of these families, we identified heterozygous missense or in-frame insertion/deletion mutations in C1R (15 families) or C1S (2 families), contiguous genes in the mapped locus that encode subunits C1r and C1s of the first component of the classical complement pathway. These two proteins form a heterotetramer that then combines with six C1q subunits. Pathogenic variants involve the subunit interfaces or inter-domain hinges of C1r and C1s and are associated with intracellular retention and mild endoplasmic reticulum enlargement. Clinical features of affected individuals in these families include rapidly progressing periodontitis with onset in the teens or childhood, a previously unrecognized lack of attached gingiva, pretibial hyperpigmentation, skin and vascular fragility, easy bruising, and variable musculoskeletal symptoms. Our findings open a connection between the inflammatory classical complement pathway and connective tissue homeostasis

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    Recent Discoveries in Monogenic Disorders of Childhood Bone Fragility

    Get PDF
    Purpose of Review This review summarizes our current knowledge on primary osteoporosis in children with focus on recent genetic findings. Recent Findings Advances in genetic research, particularly next-generation sequencing, have found several genetic loci that associate with monogenic forms of inherited osteoporosis, widening the scope of primary osteoporosis beyond classical osteogenesis imperfecta. New forms of primary osteoporosis, such as those related to WNT1, PLS3, and XYLT2, have identified defects outside the extracellular matrix components and collagen-related pathways, in intracellular cascades directly affecting bone cell function. Summary Primary osteoporosis can lead to severe skeletal morbidity, including abnormal longitudinal growth, compromised bone mass gain, and noticeable fracture tendency beginning at childhood. Early diagnosis and timely care are warranted to ensure the best achievable bone health. Future research will most likely broaden the spectrum of primary osteoporosis, hopefully provide more insight into the genetics governing bone health, and offer new targets for treatment.Peer reviewe
    corecore