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Early-onset osteoporosis is characterized by low bone mineral density (BMD) and

fractures since childhood or young adulthood. Several monogenic forms have been

identified but the contributing genes remain inadequately characterized. In search for

novel variants and novel candidate loci, we screened a cohort of 70 young subjects

with mild to severe skeletal fragility for rare copy-number variants (CNVs). Our study

cohort included 15 subjects with primary osteoporosis before age 30 years and 55

subjects with a pathological fracture history and low or normal BMD before age 16

years. A custom-made high-resolution comparative genomic hybridization array with

enriched probe density in >1,150 genes important for bone metabolism and ciliary

function was used to search for CNVs. We identified altogether 14 rare CNVs. Seven

intronic aberrations were classified as likely benign. Five CNVs of unknown clinical

significance affected coding regions of genes not previously associated with skeletal

fragility (ETV1-DGKB, AGBL2, ATM, RPS6KL1-PGF, and SCN4A). Finally, two CNVs

were pathogenic and likely pathogenic, respectively: a 4 kb deletion involving exons 1–4

of COL1A2 (NM_000089.3) and a 12.5 kb duplication of exon 3 in PLS3 (NM_005032.6).

Although both genes have been linked to monogenic forms of osteoporosis, COL1A2

deletions are rare and PLS3 duplications have not been described previously. Both CNVs

were identified in subjects with significant osteoporosis and segregatedwith osteoporosis

within the families. Our study expands the number of pathogenic CNVs in monogenic

skeletal fragility and shows the validity of targeted CNV screening to potentially pinpoint

novel candidate loci in early-onset osteoporosis.
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INTRODUCTION

Early-onset osteoporosis is characterized by low bone mineral
density (BMD), compromised bone strength and increased
susceptibility to fractures since childhood or young adulthood
(1). Genetic variants rather than environmental factors are likely
to play a key role in etiology (2, 3). Osteogenesis imperfecta (OI)
is the most common form of early-onset primary osteoporosis
(4). To date, mutations in around 17 genes with different
inheritance patterns have been linked to OI and/or early-onset
osteoporosis (5, 6). In addition, several other genes are known
to cause skeletal syndromes featuring osteoporosis, such as
spondylo-ocular syndrome (MIM 605822) caused by biallelic
mutations in XYLT2 (4, 7, 8). However, the genetic background
of childhood skeletal fragility still remains inadequately explored.

Although the most frequent types of mutations underlying
bone fragility are single nucleotide variants (SNVs) or small
insertions or deletions of nucleotides (5), structural variants that
rearrange the DNA on a larger scale have also been identified
(9). These are often in the form of copy number variants (CNVs;
deletions or duplications), where a certain DNA sequence is
present in more or less copies than the reference genome (10).
Many CNVs in the human genome represent benign normal
variants but if the CNVs affect genes or regulatory regions not
tolerating deletions or duplications they can give rise to genetic
diseases.

Primary cilia, which aremicrotubule-based extensions present
in most of the cell types in our body, are involved in the
pathogenesis of several disorders, collectively named ciliopathies,
which include chronic kidney disease, mental retardation, and
skeletal dysplasia (11). Recently, cilia have emerged as important
players in bone turnover and osteocytic mechanosensing (12–
14). However, the potential link between cilia genes and primary
osteoporosis remains unexplored.

To further elucidate the genetic background of early-onset
skeletal fragility we carried out a cohort study assessing
the spectrum of rare and pathogenic CNVs in a group of
young subjects with osteoporosis and/or recurrent fractures.
We used a custom-made high-resolution comparative-genomic
hybridization (CGH)microarray with genome-wide coverage but
increased probe density in the genes implicated in various skeletal
diseases (>300) and in ciliary function (>850).

PATIENTS AND METHODS

Study Cohorts
As part of an ongoing research program on genetic causes of
early-onset osteoporosis we recruited 70 Finnish subjects to the
present study. This study was carried out in accordance with
the recommendations of Helsinki University Hospital Ethics
Committee. The protocol was approved by the Institutional
review board of Helsinki University Hospital. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki.

The participants were enrolled as two separate cohorts using
different inclusion criteria.

The first subgroup encompassed 15 unrelated patients [6
males (40%), median age at last follow-up = 22 years, range
7–55 years] with diagnosis of primary osteoporosis. Inclusion
criteria for this group were: (1) BMD Z-score ≤−2.0, (2) at
least three significant peripheral fractures and/or one or more
spinal compression fracture(s), (3) no chronic illness leading to
secondary osteoporosis, and (4) age ≤30 years at the time of
osteoporosis diagnosis.

The second subgroup was more mildly affected than the first
group and included 55 unrelated children [38 males (69%),
median age at last follow-up 10 years, age range 6–16 years]
who were enrolled during an epidemiological study on childhood
fractures (15). All had sustained (1) at least two low-energy long
bone fractures before 10 years of age or (2) three low-energy long
bone fractures before age 16 years and/or (3) at least one low-
energy vertebral compression fracture; BMD, which was low in
some patients and normal in others, was not used as an inclusion
criterion (16). All had undergone thorough pediatric evaluation
with laboratory tests to exclude other illnesses that could lead
to fractures and secondary osteoporosis, such as celiac disease,
inflammatory bowel disease, hypogonadism, mineral disorders,
or hypophosphatasia (16). One child also had attention deficit
symptoms, one other child had mild learning difficulties and
another child transient ocular symptoms (double vision and
ptosis).

The control group included 67 healthy Finnish subjects (31
males, 46%) who served as controls in previous studies assessing
genetic determinants of early-onset obesity (17, 18). Since the
Finnish population differs genetically from others, we used this
control group to exclude rare CNVs that were absent from the
public Database of Genomic Variants (DGV) but present in
healthy Finnish controls. The median age in the group was 20
years (range 15–25 years).

Microarray-Based Comparative Genomic
Hybridization (Array-CGH)
To identify novel pathogenic CNVs causing bone fragility we
used high-resolution microarray-based comparative genomic
hybridization (array-CGH). Our custom-designed array-CGH
(design 2 × 400 k) had 180 k probes evenly distributed
throughout the genome and an increased probe density (220 k
probes) in over 300 genes causing skeletal diseases and over
850 genes involved in cilia proteome (Supplemental Table S1).
Furthermore, our custom array, which is used in a wide range of
research studies, also targeted genes involved in other conditions
in addition to those possibly affecting bone metabolism (e.g.,
mental retardation). The average coverage in the specifically
targeted genes was one oligonucleotideprobe (60 nucleotides in
length) per 100 base pairs in the coding regions and one probe
per 500 base pairs in non-coding regions (introns and 5′/3′ UTR).
Slides were designed using the Agilent Technologies web portal
eArray.

The experiments were performed according to standard
procedures using 1.2 µg of genomic DNA. The DNA from each
patient and each sex-matched control was digested with Alu
I and Rsa I restriction enzymes (Sigma-Aldrich) and labeled
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using Enzo Life Sciences CGH Labeling kit for oligo arrays.
The DNA samples were purified using the QIAquick PCR
purification kit (Qiagen) and hybridized with the 2x Hi-RPM
hybridization buffer (Agilent Technologies), Blocking Agent
(Agilent Technologies), and Cot1 DNA (Invitrogen). The slides
were washed with Wash Buffer 1-2 (Agilent Technologies) and
acetonitrile (Sigma-Aldrich) and afterwards scanned on Agilent
G2565CA Microarray Scanner. The files were extracted using
Feature Extraction software version 10.7.3 and the results were
analyzed using Agilent Genomic Workbench 7.0. The ADM-2
(aberration detection module) algorithm was used to calculate
aberrations. To get automated calls and limit the number of
false negatives we set up the following cut offs: (1) minimum
of 4 consecutive probes, (2) minimum aberration size of 500 bp,
(3) minimum absolute average log-ratio for amplifications >0.4,
and (4) minimum absolute average log ratio for deletions >0.5.
Regarding the array quality, most of the results we analyzed had
an excellent Derivative Log Ratio Spread (DLRS) value (<0.20)
and only few of them had a good DLRS (<0.25).

All identified aberrations were manually assessed and
classified into three categories: benign, uncertain clinical
significance, and pathogenic, according to the American College
of Medical Genetics (ACMG) guidelines for CNVs (19). A
CNV is classified as benign if it is reported in the Database of
Genomic Variants (DGV) and/or present in healthy individuals
and therefore not likely to cause an abnormal phenotype. The
variants of uncertain clinical significance can be subdivided
into three categories: (1) uncertain clinical significance; likely
benign (2) uncertain clinical significance (no sub-classification);
(3) uncertain clinical significance; likely pathogenic. In the
following text, we only use the terms likely benign, uncertain
clinical significance and likely pathogenic for convenience. All
CNVs that are absent both from DGV and from our ethnically
matched (Finnish) control group were considered as rare. Rare
CNVs affecting non-coding regions are determined as likely
benign. Rare CNVs located in coding regions of genes not yet
characterized as causing abnormal bone phenotypes were defined
as variants of uncertain clinical significance. Finally, novel CNVs
in genes already linked to OI and/or early-onset osteoporosis
were assigned as likely pathogenic. A CNV is classified as
pathogenic according to the ACMG guidelines only if the exact
CNV has already been reported in previous studies or if this CNV
overlaps a smaller region that has already been shown to be of
clinical relevance.

Genetic Validation of Array-CGH Findings
Breakpoint PCR was used to pinpoint the breakpoints of
the novel and pathogenic/likely pathogenic CNVs. Other
family members were subsequently screened with the same
method to establish if these CNVs were segregating with the
disease. PCR reactions were performed using Platinum Taq
polymerase. Subsequently, Sanger sequencing was performed
according to standard procedures to sequence the breakpoints.
Applied Biosystems 3730 DNA Analyzer and SeqScape (Applied
Biosystems) were used, respectively, to sequence and analyze the
results.
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Whole-genome sequencing was also performed to validate a
tandem duplication in one index subject and to exclude potential
SNVs in other genes presently known to cause OI/osteoporosis.
The libraries were prepared using the method Illumina TruSeq
PCR-free (350 bp) method at Science for Life Laboratory
(Stockholm) according to the manufacturer’s instructions and
sequenced on Illumina HiSeq X (Illumina, California, USA)
to an average autosomal depth of 34.34X. In-house pipeline
was used to generate and annotate variants according to best
practice guidelines. The reads in the FASTQ files were aligned
to the reference human genome (assembly GRCh37) by short
read alignment program Burrows-Wheeler Aligner (20). Quality
check of data and variant calling were performed using Genome
Analysis Toolkit (GATK) (21) whereas variant annotation was
carried out using Variant Effect Predictor (VEP) (22). The final
data were filtered and analyzed with GEMINI (23). Integrative
Genomics Viewer (IGV) was used to visualize the aligned reads
and variants.

RESULTS

Overall, we identified 14 rare CNVs (Table 1) in 12 out of
70 patients (two patients had 2 rare CNVs, one of uncertain
clinical significance and one likely benign). All the CNVs were
identified in male patients in a heterozygous or hemizygous
state.

Half of the identified variants (n = 7) were located in
intronic regions of protein-coding genes. Three CNVs were
identified in genes that have been associated with dyslexia
(CTNND2, NRCAM, and CNTNAP2) and their role in bone
is currently unknown (24–26). One deletion was identified
in ATG7, encoding Autophagy Related 7, an essential protein
for autophagy (27). Finally, three other deletions were found
respectively in SPAG16, playing a role in the axoneme of the

sperm, RYR2, whose mutations have been associated to cardiac
diseases and ATF3, a candidate gene for hypospadias (28–30).
Most of these CNVs targeted genes that were included in our
custom design to screen patients affected by other diseases
than those related to bone or ciliopathies. Moreover, all these
intronic variants locate far from the splicing acceptor/donor sites
and thus the possibility of affecting the splicing mechanism is
rather unlikely. Finally, intronic CNVs are generally neutral and
although it is not possible to exclude the activation of cryptic
splice sites we considered these CNVs as likely benign.

Seven other rare CNVs affected coding regions of nine
genes (ETV1, DGKB, AGBL2, ATM, RPS6KL1, PGF, SCN4A,
COL1A2, and PLS3) in total (Table 1). Five of these rare CNVs
were classified as variants of uncertain clinical significance
since the involved genes have not previously been linked to
skeletal fragility (Table 2). One variant duplicates the last part
of ATM starting from intron 62/63 (NM_000051.3). The other
variants were deletions: (1) an intragenic deletion (intron 14—
exon 17) in SCN4A (NM_000334.4) (2) a ∼1.6Mb deletion of
the entire ETV1 and exons 21-25 of DGKB (NM_004080.2)
(3) a deletion of exons 5-7 in AGBL2 (NM_024783.3) and
(4) a deletion of exons 1-4 in RPS6KL1 (NM_031464.4) and
the entire PGF gene. AGBL2 was included in our design
because it plays a role in cilia. The other CNVs were instead
detected because our array design also targets genes related
to other phenotypes than those related to bone or because
they were large enough to be captured by our backbone
coverage. Among these CNVs, the deletions affecting SCN4A,
and ETV1 could potentially contribute to bone fragility in
our patients since these genes are related to bone or muscles
(Table 2).

Two CNVs were regarded as pathogenic and likely
pathogenic, respectively, as they affected coding regions of
genes already known to cause early-onset skeletal fragility

TABLE 2 | Proteins encoded by the genes involved in the 5 variants of uncertain significance and clinical information for the affected patients.

Gene Protein Protein function Patient’s

Age

LS BMD

Z-score

No. of

compression

fractures

No. of long

bone

fractures

ATM ATM Serine/Threonine

Kinase

Cell cycle checkpoint kinase.

Disease: Ataxia-telangiectasia

10 0 0 2

SCN4A Sodium Voltage-Gated

Channel Alpha Subunit 4

Generation and propagation of action

potentials in neurons and muscle.

Disease: Myotonia congenita

15 −1.8 0 3

ETV1,

DGKB

ETS Variant 1 Cell growth, angiogenesis, migration,

proliferation and differentiation.

Diseases: Ewing sarcoma (ETV1-EWS

translocations). Prostate cancer

(ETV1-TMPRSS2 translocations)

13 −1.7 1 1

Diacylglycerol Kinase Beta Unknown

AGBL2 ATP/GTP Binding Protein

Like 2

Mediation of deglutamylation of target

proteins

7 −0.8 1 3

RPS6KL1,

PGF

Ribosomal Protein S6

Kinase Like 1

Unknown 12 +0.5 0 4

Placental Growth Factor Angiogenesis and endothelial cell

growth. VEGF signaling pathway
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FIGURE 1 | Array-CGH snapshots showing a ∼4 kb deletion in COL1A2 (A) and a ∼12.5 kb duplication in PLS3 (B).

(COL1A2 and PLS3; Table 1). They were identified in two
patients with primary osteoporosis. The first CNV is a novel
∼4 kb heterozygous deletion, chr7: 94024366- 94028364
(reference genome: GRCh37), affecting the COL1A2 gene
(Figure 1A). COL1A2 encodes the α2 chain of type I collagen
and mutations give rise to different bone diseases, including
autosomal dominant OI and Ehlers-Danlos syndrome. The
breakpoints of the deletion were determined to be in exon 1 and
intron 4 of COL1A2 (NM_000089.3; Supplemental Figure S1);
the deletion is thus predicted to remove the amino acids 8–14
of the N-propeptide in the immature protein and lead to a
frameshift that introduces an early-stop codon in the protein
[g.491_5060del (p.R8Ffs∗14)]. In this way this CNV was treated
as a frameshift SNV and classified as pathogenic according to
the ACMG classification of sequence variants (31). The affected
index patient is a 36-years-old man with severe early-onset
osteoporosis, low BMD and several compression fractures
since the age of 8 years (Figure 2B). Previous measurements of
metabolic bone markers, including serum alkaline phosphatase
and aminoterminal propeptide of type I collagen as well as
urinary collagen type 1 cross-linked N-telopeptide, were all
within normal limits. Subsequent segregation analysis identified
the same CNV in the index patient’s affected father (66 years
old) and affected brother (34 years old), both presenting with a
similar phenotype (Figure 2F). The probability of co-segregation
of the disease in multiple family members was evaluated using
The American College of Medical Genetics and Genomics and
Association of Molecular Pathology (ACMG-AMP) evidence
level (32). Assuming complete penetrance, a single causal allele
and no phenocopies the formula is N = 1/BF, as BF is defined
by the Thompson-Bayrak-Toydemir BF method (33). Under
these considerations the denominator BF is calculated as (1/2)m

where “m” is the number of meiosis of the variant of interest.
In our case N = 1/8 since we observed 3 meiosis supporting
the co-segregation (in the two affected brothers and in the
healthy brother) while the threshold for “pathogenic supporting”
evidence level is 1/8 for single families.

Interestingly, the severe vertebral compression fractures
identified in the index patient (Figure 2B) were almost identical
in his father (Figure 2A) and his affected brother (Figure 2C),
affecting the entire spine. Despite these severe spinal changes, the
proximal femur BMDwas normal in all (Figures 2D,E). All three
affected individuals lacked the typical OI features such as blue
sclerae, joint laxity, or dentinogenesis imperfecta.

The second finding identified by array-CGH is a novel
∼12.5 kb duplication, chrX: 114,848,381–114,860,880 (reference
genome: GRCh37), within PLS3 (Figure 1B). PLS3 encodes
plastin 3 and mutations in this gene underlie X-linked
osteoporosis. The aberration starts in intron 2 and ends in intron
3 of PLS3 (NM_005032.6). Breakpoint PCR showed that the
duplication is in tandem. The change was identified in a 21-
year-old male affected by severe osteoporosis. He has sustained
10 metatarsal fractures and spinal compression fractures since
childhood (Figure 3A) and has low BMD values (lumbar spine
Z-score−3.1). The aforementioned bone turnover markers were
all normal. He was treated with bisphosphonates from the age of
11 to 13 years with a good response (Figure 3B). By investigating
other family members, we identified the same duplication in a
7-year-old brother and their mother (Figure 3E), both of them
affected by skeletal symptoms. The variant was instead absent in
the two healthy siblings. In this case the ACMG-AMP evidence
level for classifying the variant based on the co-segregation score
was achieved (N = 1/16) and the variant was thus defined as
pathogenic according to this probabilistic measure. His mother
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FIGURE 2 | Patients with the COL1A2 deletion. Lumbar spine radiographs of the father at 54 years (A), the index patient at 24 years (B), and brother at 21 years (C).

The proximal hip BMD was normal (father, D; index patient, E). Pedigree of the family (F).

FIGURE 3 | Patients with the PLS3 duplication. Thoracic radiographs of the index patient before bisphosphonate treatment at age 11 years (A), and after 2 years of

bisphosphonate treatment at 13 years (B) showing multiple compressed vertebrae and improvement in vertebral shape after bisphosphonate treatment. The

mutation-positive mother at 40 years (C) and younger brother at 6 years (D) also had compression fractures. Pedigree of the family (E).
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had low BMD, back pain, and spinal compression fractures
(Figure 3C) and his younger brother had bone pain, low BMD, 3
previous long bone fractures and vertebral fractures (Figure 3D).
Since the duplication is in tandem it might affect the splicing
mechanism and/or lead to a frameshift in the reading frame
resulting in a premature termination codon on mRNA level.
The finding was confirmed by whole genome sequencing (WGS)
(Supplemental Figure S2). The analysis of the WGS data did not
detect any candidate variant other than the CNV in PLS3 that
could explain the disease in the patient.

DISCUSSION

Our study aimed to identify novel rare and pathogenic CNVs
in a group of young Finnish patients with mild to severe bone
fragility. Our study identified several rare CNVs. Altogether
there were two exonic pathogenic/likely pathogenic variants
in 2 out of 70 patients (3%). These CNVs were identified
in two index patients with primary osteoporosis and the
affected genes were already linked to this disease. The first
partially deletes part of the N-terminal signal peptide COL1A2,
g.491_5060del, and is predicted to cause a frameshift at
Arginine 8 that ends with an early stop codon at Cysteine
22 (p.R8Ffs∗14). The signal peptide determines the secretion
efficiency of collagen pre-pro-peptide into the endoplasmic
reticulum. It is known that the range of OI severity depends on
the location of mutation in type I collagen. Mutations in the
Gly-X-Y repeats of the helical region and in the C-propeptide
cause mild to severe OI (5, 6). Furthermore, mutations in the
N-propeptidase cleavage site give rise to the Ehlers Danlos
syndrome VIIA (if the mutation affects COL1A1) or VIIB
(if the mutation resides in COL1A2) (34) and mutations in
the C- propeptidase cleavage site cause high-bone mass OI
(35). Finally, a particular form of combined OI and Ehlers
Danlos syndrome derives from heterozygous mutations in the
N-propeptide (36).

To date, only few deletions in COL1A2 have been reported
and the exact deletion identified in our patient and in some of
his family members has never been described. Previous studies
showed that multi-exonic COL1A2 deletions preserving the Gly-
X-Y pattern may anyway lead to defective folding of type I
collagen (34, 37, 38). Furthermore, deletions in the other type
I collagen encoding gene, COL1A1, give rise to different OI
phenotypes of variable severity. In general, complete COL1A1
deletions cause milder phenotypes compared to multi-exon
deletions (9). Haploinsufficiency, due to a reduced COL1A2
mRNA expression, may explain the severity of the bone disease
in our patient. Since the deletion occurs in the first amino acids,
it is likely that the mRNA produced by the affected allele is
degraded by nonsense-mediated RNA decay. In this way, there
would be no effective protein synthesis from this allele. Our
patient and his affected family members all presented with about
identical spinal fractures involving almost all vertebral bodies
and lacked the typical features of OI or Ehlers Danlos syndrome.
The special location of the deletion probably explains why the
patient’s phenotype was not typical for OI.

Concerning the second CNV, the duplication within PLS3,
chrX: 114,848,381–114,860,880, is the first duplication described
in this gene. On the other hand, SNVs and deletions in PLS3
have already been reported in patients with osteoporosis (39–
43). Recently, some patients with PLS3 deletions have been
described, and apart from severe osteoporosis there is a bone
mineralization defect (42). However, the molecular mechanism
behind PLS3 osteoporosis is not fully understood yet. Concerning
the identified duplication, it affects the EF-hand 1 domain, which
is very important for calcium binding. This tandem duplication
is likely to cause a defective splicing and/or a frameshift that leads
to an early-stop codon in the mRNA. Since PLS3 locates on the X
chromosome the index patient and his affected brother are likely
to not have any functional protein, which is concordant with their
severe skeletal phenotype. On the other hand their mother, who
has also a wild-type copy of the gene, is only mildly affected.

Half of the other 10 rare CNVs were regarded as being
of unknown clinical significance and half as benign. Among
the variants of unknown clinical significance, one deletion was
identified in AGBL2, encoding the ATP/GTP binding protein
like 2, a protein whose function is not well understood yet.
Agbl2/Agbl3 double-KO mice present with defects in tubulin
deglutamylation in testis and sperm but no skeletal fragility (44).
Furthermore, the duplication in ATM was also regarded as likely
benign since mutations in this gene have been seen in patients
with ataxia talangiectasia (45). However, three variants could
potentially have an impact on the skeleton. While our patient
with a deletion within SCN4A lacked symptoms of myotonia
congenita, it is possible that the deletion leads to mild muscular
symptoms and thereby to reduced bone strength (46). The
second potential deleterious deletion affects RPS6KL1 and PGF.
Although PGF does not seem to be involved in bone metabolism,
RPS6KL1 might affect BMD (47). In fact, one of the largest
genome-wide association studies (GWAS) on BMD showed a
hit in RPS6KA5, which belongs to the same family of ribosomal
protein kinases as RPS6KL1 (48). The third variant that could
be the cause of mild skeletal fragility affects ETV1 and DGKB.
Somatic translocations of ETV1 have indeed been found not only
in prostate cancer but also in Ewing sarcoma (49, 50). DGKB
defects have been linked to glucose homeostasis but to the best
of our knowledge there are no studies or mouse models showing
abnormal bone phenotypes due to mutations in this gene (51).
In summary, although we did not have enough evidence to show
that these rare exonic CNVs cause skeletal fragility, they could
be regarded as new potential loci for osteoporosis and should be
further investigated.

Interestingly, 3 out of 7 intronic CNVs affected genes
associated with neuronal impairment (CTNND2, NRCAM, and
CNTNAP2). A potential effect on bone metabolism could either
be direct, leading to altered bone cell function by impairing
e.g., osteocytic cilia function, or indirect, affecting the neuronal
factors involved in skeletal regulation. Previous studies in
mice have shown that neurons could also influence BMD, in
addition to the central nervous system (52, 53). The patient
with multiple fractures and the CNV in CTNND2 had transient
problems in vision whereas the patient with the CNV in
CNTNAP2 hadmild attention deficit symptoms. It is also possible
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that the high number of bone fractures could result from a
reduced capacity of our patients to adjust reflexes during falls,
leading to propensity to fractures. However, due to the intronic
location of these variants and absence of functional validation,
their relationship to skeletal fragility in our patients remains
uncertain.

A limitation of our study is that we only had increased
coverage in >1,150 genes that were already known to be
somehow related to bone homeostasis or ciliary function
(plus other loci included in our custom design for other
research purposes). For this reason, this method is valid for
identification of novel candidate genes outside these only when
large deletions or duplications occur (e.g., RPS6KL1-PGF and
ETV1-DGKB deletions). Despite this limitation, we identified
several potentially interesting CNVs that need to be explored in
future studies.

In conclusion, we showed the validity of our custom-made
array-CGH to expand the spectrum of large-scale variants in
skeletal fragility by identifying a novel multi-exonic deletion in
the COL1A2 gene and a novel duplication of the entire exon 3
of PLS3. Finally, we showed a potential use of our array-CGH to
also target cilia genes and possibly identify novel candidate loci
for early-onset skeletal fragility. However, the significance of rare
CNVs in genes not yet linked to skeletal phenotypes has to be
further investigated.
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