42 research outputs found

    Holocene wildfire regimes in western Siberia: interaction between peatland moisture conditions and the composition of plant functional types

    Get PDF
    Wildfire is the most common disturbance type in boreal forests and can trigger significant changes in forest composition. Waterlogging in peatlands determines the degree of tree cover and the depth of the burnt horizon associated with wildfires. However, interactions between peatland moisture, vegetation composition and flammability, and fire regime in forest and forested peatland in Eurasia remain largely unexplored, despite their huge extent in boreal regions. To address this knowledge gap, we reconstructed the Holocene fire regime, vegetation composition, and peatland hydrology at two sites located in predominantly light taiga (Pinus sylvestris Betula) with interspersed dark taiga communities (Pinus sibirica, Picea obovata, Abies sibirica) in western Siberia in the Tomsk Oblast, Russia. We found marked shifts in past water levels over the Holocene. The probability of fire occurrence and the intensification of fire frequency and severity increased at times of low water table (drier conditions), enhanced fuel dryness, and an intermediate dark-to-light taiga ratio. High water level, and thus wet peat surface conditions, prevented fires from spreading on peatland and surrounding forests. Deciduous trees (i.e. Betula) and Sphagnum were more abundant under wetter peatland conditions, and conifers and denser forests were more prevalent under drier peatland conditions. On a Holocene scale, severe fires were recorded between 7.5 and 4.5 ka with an increased proportion of dark taiga and fire avoiders (Pinus sibirica at Rybnaya and Abies sibirica at Ulukh–Chayakh) in a predominantly light taiga and fire-resister community characterised by Pinus sylvestris and lower local water level. Severe fires also occurred over the last 1.5 kyr and were associated with a declining abundance of dark taiga and fire avoiders, an expansion of fire invaders (Betula), and fluctuating water tables. These findings suggest that frequent, high-severity fires can lead to compositional and structural changes in forests when trees fail to reach reproductive maturity between fire events or where extensive forest gaps limit seed dispersal. This study also shows prolonged periods of synchronous fire activity across the sites, particularly during the early to mid-Holocene, suggesting a regional imprint of centennial- to millennial-scale Holocene climate variability on wildfire activity. Humans may have affected vegetation and fire from the Neolithic; however, increasing human presence in the region, particularly at the Ulukh–Chayakh Mire over the last 4 centuries, drastically enhanced ignitions compared to natural background levels. Frequent warm and dry spells predicted by climate change scenarios for Siberia in the future will enhance peatland drying and may convey a competitive advantage to conifer taxa. However, dry conditions will probably exacerbate the frequency and severity of wildfire, disrupt conifers' successional pathway, and accelerate shifts towards deciduous broadleaf tree cover. Furthermore, climate–disturbance–fire feedbacks will accelerate changes in the carbon balance of boreal peatlands and affect their overall future resilience to climate change

    The Eurasian Modern Pollen Database (EMPD), version 2

    Get PDF
    The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019)Swiss National Science Foundation | Ref. 200021_16959

    The Eurasian Modern Pollen Database (EMPD), version 2

    Get PDF
    The Eurasian (nee European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60% from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).Peer reviewe

    Data for: Early to mid-Holocene hydroclimate trends in the Western Carpathians of Romania

    No full text
    The file contains the database with testate amoebae assemblages, pollen data, microcharcoal and measured physical properties

    Data for: Early to mid-Holocene hydroclimate trends in the Western Carpathians of Romania

    No full text
    The file contains the database with testate amoebae assemblages, pollen data, microcharcoal and measured physical properties

    Post-glacial patterns in vegetation dynamics in Romania: homogenization or differentiation?

    No full text
    Aim- This paper examines eight fossil pollen datasets from Romania with the aim of exploring regional and elevational patterns in site similarity throughout the Holocene In particular, we aim to determine whether there are clear intervals of homogenization/differentiation and to ascertain the potential driving factors.Location- Romania.Methods- Qualitative (pollen diagrams) and numerical methods including principal components analysis and Bray-Curtis similarity analyses were used.Results- We found strong variability in the past vegetation dynamics during the Holocene Bray-Curtis similarity analyses show large fluctuations in vegetation similarity and distinct periods of homogenization and differentiation throughout the Holocene The magnitude and length of these periods appear quite variable in time, but the significant ones can be delimited as follows: (1) differentiation between 11,250 and 11,000-cal.-yr-bp, 10,000 and 9750-cal.-yr-bp, 6000 and 5750-cal.-yr-bp, 2500 and 2250-cal.-yr-bp, and especially over the last 200-years; and (2) homogenization between 9750 and 9500-cal.-yr-bp, and 2750 and 2500-cal.-yr-bp, with more stable periods between 9000 and 7750-cal.-yr-bp, 4750 and 3500-cal.-yr-bp, and 2000 and 1000-cal.-yr-bp.Main conclusions- First, periods of biotic homogenization that occurred before significant anthropogenic impact on vegetation demonstrate that not all homogenization is a product of anthropogenic change: it can also be driven by natural causes In fact, recent human impact (over the last 200-years) appears to have resulted in increased regional differentiation and not in homogenization - a result that contradicts most studies based on more modern, short-term records Second, both abiotic (climate and disturbance) and biotic factors are likely drivers of intervals of differentiation and homogenization We suggest that differentiation may be triggered primarily by climate changes and disturbances (mostly natural pre-2500-cal.-yr-bp and human-induced thereafter), whereas homogenization may be driven predominantly by biotic interactions (e.g immigration and interspecific competition) Third, this long-term study raises awareness that assessments of pattern in vegetation homogenization/differentiation may depend on the specific time period and length of investigation Long-term investigations through multiple generations are likely to yield particularly useful information on the mechanisms and effects of biotic homogenization. © 2010 Blackwell Publishing Ltd

    Tree and timberline shifts in the northern Romanian Carpathians during the Holocene and the responses to environmental changes

    No full text
    High altitude environments are experiencing more rapid changes in temperature than the global average with the risk of losing essential ecosystem services in mountain environments. The Carpathians Mountains are regarded as hosting Europe's most pristine mountain ecosystems, yet the paucity of past environmental records limits our understanding of their sensitivity to the various drivers of change. A multi-proxy palaeoecological approach (plant macro-remains, pollen, charcoal) applied to three Holocene sediment sequences (between 1540 and 1810 m a.s.l.) in the Rodna Mountains documents past treeline and timberline shifts in response to climate change and human impact to anticipate the likely future responses. Our results indicate that forest reacted sensitively to past climate conditions. The timberline had exceeded an elevation of 1540 m a.s.l. by 10,200 cal. yr BP, when summers were warmer than today. The treeline remained below 1810 m a.s.l. at this time and reached its maximum elevation after 8500 cal. yr BP, when winter temperatures became milder. Cool summer conditions probably caused a lowering of the timberline and an extension of the treeline ecotone from 4900 cal. yr BP, a process accentuated by human impact from the Bronze Age (3500 cal. yr BP) onwards. The anticipated upslope tree movements as a consequence ongoing global warming are not yet clearly visible in our records, but will more probably take place in abandoned agricultural areas and be counter-balanced by re-enforced anthropogenic pressure elsewhere. Pinus sylvestris was the dominant tree species in the timberline under a warm and dry climate, when fires were frequent, during the early Holocene (11,250 e10,200 cal. yr BP), while Picea abies became dominant in the timberline and Pinus mugo in the treeline ecotone, respectively from 10,200 cal. yr BP to the present. Abies alba became a significant component of the timber over the last four millennia. The anticipated future warmer and moister climatic conditions will favour the persistence of P. abies as well as A. alba. However, A. alba is more sensitive to anthropogenic disturbance, which implies that in places with continuing farmland pressure, A. alba may be less prevalent than P. abies in the future. Anthropogenic pressure is expected to increase the proportion of tree species characteristic of more disturbed forests and consequently threaten biodiversity with important implications for mountain ecosystem service

    Response of a spring-fed fen ecosystem in Central Eastern Europe (NW Romania) to climate changes during the last 4000 years : a high resolution multi-proxy reconstruction

    No full text
    We document the long-term development of a spring-fed fen assessing its sensivity to climate changes over the last ca. 4000 years. Our investigation is based on high-resolution, continuous plant macrofossil remains and mollusc records, complemented by pollen, geochemical analysis and radiocarbon dating of Valea Morii, located in the Feleac Hills (Transylvanian Depression) in NW Romania, Central Eastern Europe. Based on our palaeocological data we have distinguished three stages of wet habitat conditions: two stages between 4000 and 2450 cal yr BP and one in the last 800 cal yr BP, and one dry stage between ca. 2450 and 800 cal yr BP. These local habitat conditions appear to reasonably reflect regional climate characteristics. High-resolution analysis of two replicated cores documented a mostly comparable pattern of local plant and mollusc succession, and stable isotope values from ca. 500 cal yr BP. The appearance of C. mariscus during the last two centuries may be related to increased wetness and associated active CaCO3 precipitation, which allowed this plant to colonise the spring-fed fen studied. However, it can be not excluded that the occurrence and spread of a Cladium mariscus population at this site during the last two centuries might have been partly favoured by the warming of the climate after the Little Ice Age. The potential of carbonate oxygen stable isotope values as an indicator of major trends in climatic change, both temperature and humidity, in mountain spring-fed fen deposits is shown. Carbon isotopes in the carbonates were found to be useful in reconstruction of changes in vegetation, soil development and the dissolution of bedrock carbonates, primarily as a reaction to changes in climate humidity

    The influence of refugial population on Lateglacial and early Holocene vegetational changes in Romania

    No full text
    Romania has for a long time been lacking good palaeoenvironmental records, particularly for the Late Quaternary. A chronological framework had been nearly absent and the vegetation development had been reconstructed entirely from pollen data. Data sets from this part of Europe are important for assessing the spatial variability of past vegetation and climatic changes and to reconstruct tree migration routes at the end of the last glacial period. New palaeobotanical evidence has enabled us to address this gap and to provide a more comprehensive picture of the Lateglacial and early Holocene continental environment. This paper reviews results from radiocarbon dated sequences in Romania with the aim to place them in a larger perspective with regard to glacial refugia and tree immigration, and to asses the vegetation response to climatic oscillation from the end of the Last Glacial Maximum (LGM) to the early Holocene. This study documents that some coniferous and broad-leaved trees were present prior to 14,700 cal. yr BP in Romania, and thus it appears that this region may have been a refugial area for some tree species. During the Lateglacial, the vegetation shows a distinct response to climatic oscillations at all elevations, although the response is stronger at mid altitude (800-1100 m. a.s.l) than at high altitudes. Moreover, smaller climatic oscillations are only recorded at sites situated at mid altitudes, probably because these areas were located close to the tree line ecotone. © 2007 Elsevier B.V. All rights reserved

    Promoting universal financial protection: a case study of new management of community health insurance in Tanzania.

    Get PDF
    BACKGROUND: The National Health Insurance Fund (NHIF), a compulsory formal sector scheme took over the management of the Community Health Fund (CHF), a voluntary informal sector scheme, in 2009. This study assesses the origins of the reform, its effect on management and reporting structures, financial flow adequacy, reform communication and acceptability to key stakeholders, and initial progress towards universal coverage. METHODS: The study relied on national data sources and an in-depth collective case study of a rural and an urban district to assess awareness and acceptability of the reform, and fund availability and use relative to need in a sample of facilities. RESULTS: The reform was driven by a national desire to expand coverage and increase access to services. Despite initial delays, the CHF has been embedded within the NHIF organisational structure, bringing more intensive and qualified supervision closer to the district. National CHF membership has more than doubled. However, awareness of the reform was limited below the district level due to the reform's top-down nature. The reform was generally acceptable to key stakeholders, who expected that benefits between schemes would be harmonised.The reform was unable to institute changes to the CHF design or district management structures because it has so far been unable to change CHF legislation which also limits facility capacity to use CHF revenue. Further, revenue generated is currently insufficient to offset treatment and administration costs, and the reform did not improve the revenue to cost ratio. Administrative costs are also likely to have increased as a result of the reform. CONCLUSION: Informal sector schemes can benefit from merger with formal sector schemes through improved data systems, supervision, and management support. However, effects will be maximised if legal frameworks can be harmonised early on and a reduction in administrative costs is not guaranteed
    corecore