40 research outputs found

    The genome of cowpea (Vigna unguiculata [L.] Walp.)

    Get PDF
    [EN] Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub-Saharan Africa, that is resilient to hot and drought-prone environments. An assembly of the single-haplotype inbred genome of cowpea IT97K-499-35 was developed by exploiting the synergies between single-molecule real-time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination-poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high-recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS-LRR and the SAUR-like auxin superfamilies compared with other warm-season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presentedS

    Impact of constitutional TET2 haploinsufficiency on molecular and clinical phenotype in humans

    Get PDF
    Clonal hematopoiesis driven by somatic heterozygous TET2 loss is linked to malignant degeneration via consequent aberrant DNA methylation, and possibly to cardiovascular disease via increased cytokine and chemokine expression as reported in mice. Here, we discover a germline TET2 mutation in a lymphoma family. We observe neither unusual predisposition to atherosclerosis nor abnormal pro-inflammatory cytokine or chemokine expression. The latter finding is confirmed in cells from three additional unrelated TET2 germline mutation carriers. The TET2 defect elevates blood DNA methylation levels, especially at active enhancers and cell-type specific regulatory regions with binding sequences of master transcription factors involved in hematopoiesis. The regions display reduced methylation relative to all open chromatin regions in four DNMT3A germline mutation carriers, potentially due to TET2-mediated oxidation. Our findings provide insight into the interplay between epigenetic modulators and transcription factor activity in hematological neoplasia, but do not confirm the putative role of TET2 in atherosclerosis.Peer reviewe

    Improved chromosome-level genome assembly of the Glanville fritillary butterfly (Melitaea cinxia) integrating Pacific Biosciences long reads and a high-density linkage map

    Get PDF
    Background The Glanville fritillary (Melitaea cinxia) butterfly is a model system for metapopulation dynamics research in fragmented landscapes. Here, we provide a chromosome-level assembly of the butterfly's genome produced from Pacific Biosciences sequencing of a pool of males, combined with a linkage map from population crosses. Results The final assembly size of 484 Mb is an increase of 94 Mb on the previously published genome. Estimation of the completeness of the genome with BUSCO indicates that the genome contains 92-94% of the BUSCO genes in complete and single copies. We predicted 14,810 genes using the MAKER pipeline and manually curated 1,232 of these gene models. Conclusions The genome and its annotated gene models are a valuable resource for future comparative genomics, molecular biology, transcriptome, and genetics studies on this species.Peer reviewe

    Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism

    Get PDF
    Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution. Striga seeds germinate in response to host-derived strigolactones (SLs) and then develop a specialized penetration structure, the haustorium, to invade the host root. A family of SL receptors has undergone a striking expansion, suggesting a molecular basis for the evolution of broad host range among Striga spp. We found that genes involved in lateral root development in non-parasitic model species are coordinately induced during haustorium development in Striga, suggesting a pathway that was partly co-opted during the evolution of the haustorium. In addition, we found evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of parasitism and a key resource for the future development of Striga control strategies.Peer reviewe

    Construction of a map-based reference genome sequence for barley, Hordeum vulgare L.

    Get PDF
    Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. `Morex' was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX).Peer reviewe

    Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch

    Get PDF
    Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.Peer reviewe

    A chromosome conformation capture ordered sequence of the barley genome

    Get PDF
    201
    corecore