52 research outputs found

    Endemic trees in a tropical biodiversity hotspot imperilled by an invasive tree

    Get PDF
    Non-native plants invade some tropical forests but there are few long-term studies of these invasions, and the consequences for plant richness and diversity are unclear. Repeated measurements of permanent plots in tropical montane rain forests in the Blue and John Crow Mountains National Park in Jamaica over 24 to 40 years coincided with invasion by a non-native tree, Pittosporum undulatum. By 2014, P. undulatum comprised, on average, 11.9% of stems ≄ 3 cm diameter and 10.4% of the basal area across 16 widespread plots within c. 250 ha of the forests. Across these plots, the more P. undulatum increased in basal area over 24 years, the greater the decline in local, plot-scale tree species richness, and the greater the reduction in the percentage of stems of endemic tree species. Plot-scale tree diversity (Shannon and Fisher\u27s alpha) also declined the more P. undulatum basal area increased, but beta diversity across the plots was not reduced. Declines in local-scale tree species diversity and richness as the invasion progresses is especially concerning because Jamaica is a global biodiversity hotspot. Native birds disperse P. undulatum seeds widely, and future hurricanes will probably further increase its invasion by reducing canopy cover and therefore promoting growth rates of its established shade-tolerant seedlings. Remedial action is needed now to identify forest communities with greatest endemism, and to protect them through a continuing programme of control and removal of P. undulatum

    Increased Litterfall in Tropical Forests Boosts the Transfer of Soil CO2 to the Atmosphere

    Get PDF
    Aboveground litter production in forests is likely to increase as a consequence of elevated atmospheric carbon dioxide (CO2) concentrations, rising temperatures, and shifting rainfall patterns. As litterfall represents a major flux of carbon from vegetation to soil, changes in litter inputs are likely to have wide-reaching consequences for soil carbon dynamics. Such disturbances to the carbon balance may be particularly important in the tropics because tropical forests store almost 30% of the global soil carbon, making them a critical component of the global carbon cycle; nevertheless, the effects of increasing aboveground litter production on belowground carbon dynamics are poorly understood. We used long-term, large-scale monthly litter removal and addition treatments in a lowland tropical forest to assess the consequences of increased litterfall on belowground CO2 production. Over the second to the fifth year of treatments, litter addition increased soil respiration more than litter removal decreased it; soil respiration was on average 20% lower in the litter removal and 43% higher in the litter addition treatment compared to the controls but litter addition did not change microbial biomass. We predicted a 9% increase in soil respiration in the litter addition plots, based on the 20% decrease in the litter removal plots and an 11% reduction due to lower fine root biomass in the litter addition plots. The 43% measured increase in soil respiration was therefore 34% higher than predicted and it is possible that this ‘extra’ CO2 was a result of priming effects, i.e. stimulation of the decomposition of older soil organic matter by the addition of fresh organic matter. Our results show that increases in aboveground litter production as a result of global change have the potential to cause considerable losses of soil carbon to the atmosphere in tropical forests

    Responses of arbuscular mycorrhizal fungi to long-term inorganic and organic nutrient addition in a lowland tropical forest

    Get PDF
    Improved understanding of the nutritional ecology of arbuscular mycorrhizal (AM) fungi is important in understanding how tropical forests maintain high productivity on low-fertility soils. Relatively little is known about how AM fungi will respond to changes in nutrient inputs in tropical forests, which hampers our ability to assess how forest productivity will be influenced by anthropogenic change. Here we assessed the influence of long-term inorganic and organic nutrient additions and nutrient depletion on AM fungi, using two adjacent experiments in a lowland tropical forest in Panama. We characterised AM fungal communities in soil and roots using 454-pyrosequencing, and quantified AM fungal abundance using microscopy and a lipid biomarker. Phosphorus and nitrogen addition reduced the abundance of AM fungi to a similar extent, but affected community composition in different ways. Nutrient depletion (removal of leaf litter) had a pronounced effect on AM fungal community composition, affecting nearly as many OTUs as phosphorus addition. The addition of nutrients in organic form (leaf litter) had little effect on any AM fungal parameter. Soil AM fungal communities responded more strongly to changes in nutrient availability than communities in roots. This suggests that the 'dual niches' of AM fungi in soil versus roots are structured to different degrees by abiotic environmental filters, and biotic filters imposed by the plant host. Our findings indicate that AM fungal communities are fine-tuned to nutrient regimes, and support future studies aiming to link AM fungal community dynamics with ecosystem function

    The global abundance of tree palms

    Get PDF
    Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≄10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    Edge effects on litterfall mass and nutrient concentrations in forest fragments in central Amazonia

    No full text
    Forest edges bordering on pasture were created by cutting and burning the surrounding Amazonian lowland rain Forest in the dry season (June) of 1990. Litterfall was measured For 3.5 y along transects 10, 50, 100 and 250-m into the forest from the Forest edge. Litterfall along the 10-m transects increased by up to 2.5 times that on spatial controls (250-m transects) in the dry season in which the edge was created. In the second dry season after edge creation litterfall at 10-m was lower than on controls, after which it returned to control rates in the second wet season, 1.5 y after edge creation. Litterfall 50-m into the forest was less affected; there was a smaller rise in the dry season in which the edge was cut, and no significant effects after that. At 100-m there was no effect of edge creation on litterfall. Phosphorus concentrations in litterfall were elevated along 10-m transects, 10-12 wk after edge creation, possibly because of reduced retranslocation prior to abscission. The changes in litterfall described here are inextricably linked to the biomass collapse, which occurs near forest-fragment edges in the same area
    • 

    corecore