81 research outputs found

    A framework to evaluate hydrogen as fuel in international shipping

    Get PDF
    The shipping industry is today challenged by tighter regulations on efficiency, air pollution and the need to reduce its greenhouse gas emissions. The decarbonisation of the global energy system could be achieved with the use of alternative energy and fuels, and so a widespread switch to the adoption of alternative fuel in shipping could be experienced within the coming decades. Lately, many scenarios of alternative fuels in shipping have been investigated. Among the options of alternative fuels with different propulsion technologies, hydrogen with marine fuel cells (FCs) represent an example of such an alternative fuel. This paper proposes a framework to examine a possible transition path for the use of hydrogen in shipping within the context of decarbonisation of the wider global energy system. The framework is based on a soft- linking the global integrated assessment model (TIAM-UCL) and the shipping model (GloTraM). Initial results from this work-in-progress describe the trajectories of hydrogen prices, the characteristic of the hydrogen fleet and the consequences for shipping CO2 emissions, the hydrogen infrastructure requirements, the use of hydrogen in other sectors, and the consequences for global energy system CO2 emissions

    The use of fish-derived cell lines for investigation of environmental contaminants: an update following OECD’s fish toxicity testing framework No. 171.

    Get PDF
    Protocols for evaluating chemical toxicity at the cellular level using fish cell lines are described in this unit. Routine methodologies for growing salmonid cell lines, and using them in aquatic toxicology studies that support the mandate of the Organization for Economic Co-operation and Development (OECD) to reduce the use of whole animals in toxicity testing, are presented. Rapid, simple, cost-effective tests evaluating viability of cells with three indicator dyes per sample provides a broad overview of the sensitivity of cells to chemical contaminants. This fluorometric assay involves: (1) alamar blue for metabolic activity, (2) CFDA-AM for membrane integrity, and (3) neutral red for lysosomal function. These protocols are conveniently performed in semi-unison within the same multiwell plates and read at three different wavelengths. Detailed step-by-step descriptions of the assays, parameters to consider, troubleshooting, and guidelines for data interpretation are provided as essential tools for investigating environmental aquatic contaminants at the cellular level

    Active afforestation of drained peatlands is not a viable option under the EU Nature Restoration Law

    Get PDF
    The EU Nature Restoration Law (NRL) is critical in restoring degraded ecosystems. However, active afforestation of degraded peatlands has been suggested by some as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry and its limitations, uncertainties and evidence gaps. Based on this discussion we conclude: Afforestation of drained peatlands, while maintaining their drained state, is not equivalent to ecosystem restoration. This approach will not restore the peatland ecosystem's flora, fauna, and functions. There is insufficient evidence to support the long-term climate change mitigation benefits of active afforestation of drained peatlands. Most studies only focus on the short-term gains in standing biomass and rarely explore the full life cycle emissions associated with afforestation of drained peatlands. Thus, it is unclear whether the CO2 sequestration of a forest on drained peatland can offset the carbon loss from the peat over the long term. In some ecosystems, such as abandoned or certain cutaway peatlands, afforestation may provide short-term benefits for climate change mitigation compared to taking no action. However, this approach violates the concept of sustainability by sacrificing the most space-effective carbon store of the terrestrial biosphere, the long-term peat store, for a shorter-term, less space-effective, and more vulnerable carbon store, namely tree biomass. Consequently, active afforestation of drained peatlands is not a viable option for climate mitigation under the EU Nature Restoration Law and might even impede future rewetting/restoration efforts. To restore degraded peatlands, hydrological conditions must first be improved, primarily through rewetting

    Geo‐Hydromorphological Assessment of Europe’s Southernmost Blanket Bogs

    Get PDF
    Blanket bogs are a globally rare type of ombrotrophic peatland internationally recognised for long‐term terrestrial carbon storage, the potential to serve as carbon sinks, habitat provision and for their palaeoenvironmental archive. This habitat is protected in the European Union under the Habitats Directive (92/43/EEC), but a number of blanket bogs located in the Cantabrian Mountains (northern Spain), representing the southernmost known edge‐of‐range for this habitat in Europe, are currently not recognised and are at increased threat of loss. Using climatic data, topography, aerial photography and peat depth surveys, this study has identified ten new areas of blanket bog located between the administrative regions of Cantabria and Castilla y León. Peat depth data and topography were used to provide a detailed geomorphological description and hydromorphological classification (mesotope units) of these currently unrecognised areas of blanket bog. Maximum peat depth measured across the ten sites ranged from 1.61 m to 3.78 m covering a total area of 18.6 ha of blanket bog (> 40 cm peat depth). The volume of peat accumulated across the sites was determined to be more than 216,000 m3 and is estimated to hold 19.89 ± 3.51kt C. Twenty‐four individual hydrological mesotope units were described indicating a diverse assemblage of blanket bogs in this region. The peatlands identified in this research extend the known limit of blanket bogs in Europe farther south than previously recorded and combined with four other unprotected blanket bogs recently identified in the Cantabrian Mountains, these peatlands represent 10.5% of blanket bog currently recognised and protected in Spain. The range of anthropogenic pressures currently acting on peatlands in the Cantabrian Mountains indicates that without protection these important landforms and carbon stored may be lost. An urgent update of European peatland inventories is thus required to preserve these valuable carbon stores and potential carbon sinks

    Predicting Concentrations of Organic Chemicals in Fish by Using Toxicokinetic Models

    Get PDF
    Quantification of chemical toxicity continues to be generally based on measured external concentrations. Yet, internal chemical concentrations have been suggested to be a more suitable parameter. To better understand the relationship between the external and internal concentrations of chemicals in fish, and to quantify internal concentrations we compared three. toxicokinetic (TK) models with each other and with literature data of measured concentrations of 39 chemicals. Two one, compartment models, together with the physiologically based toxicokinetic (PBTK) model, in which we improved the treatment of lipids, were used to predict concentrations of organic chemicals in two fish species: rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas). All models predicted the measured internal concentrations in fish within I order of magnitude for at least 68% of the chemicals. Furthermore, the PBTK model outperformed the one-compartment models with respect to simulating chemical concentrations in the whole body (at least 88% of internal concentrations were predicted within 1 order of magnitude using the PBTK model). All the models can be used to predict concentrations in different fish species without additional experiments. However, further development of TK models is required for polar, ionizable, and easily biotransformed compounds

    The Schnitzler syndrome

    Get PDF
    The Schnitzler syndrome is a rare and underdiagnosed entity which is considered today as being a paradigm of an acquired/late onset auto-inflammatory disease. It associates a chronic urticarial skin rash, corresponding from the clinico-pathological viewpoint to a neutrophilic urticarial dermatosis, a monoclonal IgM component and at least 2 of the following signs: fever, joint and/or bone pain, enlarged lymph nodes, spleen and/or liver, increased ESR, increased neutrophil count, abnormal bone imaging findings. It is a chronic disease with only one known case of spontaneous remission. Except of the severe alteration of quality of life related mainly to the rash, fever and pain, complications include severe inflammatory anemia and AA amyloidosis. About 20% of patients will develop a lymphoproliferative disorder, mainly Waldenström disease and lymphoma, a percentage close to other patients with IgM MGUS. It was exceedingly difficult to treat patients with this syndrome until the IL-1 receptor antagonist anakinra became available. Anakinra allows a complete control of all signs within hours after the first injection, but patients need continuous treatment with daily injections

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean = 3.0 \ub1 2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 \ub1 2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7 \ub1 2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore