430 research outputs found

    Protein PII regulates both inorganic carbon and nitrate uptake and is modified by a redox signal in Synechocystis PCC 6803

    Get PDF
    AbstractIn Synechocystis PCC 6803 as in other cyanobacteria, involvement of protein PII in the co-regulation of inorganic carbon and nitrogen metabolism was established based on post-translational modifications of the protein resulting from changes in the carbon/nitrogen regimes. Uptake of bicarbonate and nitrate in response to changes of the carbon and/or nitrogen regimes is altered in a PII-null mutant, indicating that both processes are under control of PII. Modulation of electron flow by addition of methyl viologen with or without duroquinol, or in a NAD(P)H dehydrogenase-deficient mutant, affects the phosphorylation level of PII. The redox state of the cells would thus act as a trigger for PII phosphorylation

    Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria

    Get PDF
    Background: The picocyanobacterial genus Synechococcus occurs over wide oceanic expanses, having colonized most available niches in the photic zone. Large scale distribution patterns of the different Synechococcus clades (based on 16S rRNA gene markers) suggest the occurrence of two major lifestyles ('opportunists'/'specialists'), corresponding to two distinct broad habitats ('coastal'/'open ocean'). Yet, the genetic basis of niche partitioning is still poorly understood in this ecologically important group. Results: Here, we compare the genomes of 11 marine Synechococcus isolates, representing 10 distinct lineages. Phylogenies inferred from the core genome allowed us to refine the taxonomic relationships between clades by revealing a clear dichotomy within the main subcluster, reminiscent of the two aforementioned lifestyles. Genome size is strongly correlated with the cumulative lengths of hypervariable regions (or 'islands'). One of these, encompassing most genes encoding the light-harvesting phycobilisome rod complexes, is involved in adaptation to changes in light quality and has clearly been transferred between members of different Synechococcus lineages. Furthermore, we observed that two strains (RS9917 and WH5701) that have similar pigmentation and physiology have an unusually high number of genes in common, given their phylogenetic distance. Conclusion: We propose that while members of a given marine Synechococcus lineage may have the same broad geographical distribution, local niche occupancy is facilitated by lateral gene transfers, a process in which genomic islands play a key role as a repository for transferred genes. Our work also highlights the need for developing picocyanobacterial systematics based on genome-derived parameters combined with ecological and physiological data

    Première évaluation du risque toxique lié aux cyanobactéries d'eau douce en France : le programme " EFFLOCYA "

    Get PDF
    Une enquête menée à l'aide d'un questionnaire couvrant l'ensemble du territoire français ainsi que l'étude spécifique d'écosystèmes aquatiques de type lacs et réservoirs ont permis de montrer que les proliférations de cyanobactéries toxiques pouvaient a priori affecter n'importe quel plan d'eau de l'Héxagone. Les genres rencontrés responsables de la production de toxines, le plus souvent hépatiques, sont Microcystis, Planktothrix, Anabœna et Cylindrospermopsis.Les efflorescences peuvent se produire tout au long de l'année car certaines espèces sont adaptées aux eaux froides et elles ne sont pas liées de manière univoque à un état eutrophe de l'écosystème.La production toxinique est la plus élevée lorsque les populations cyanobactériennes sont peu ou pas diversifiées et à la lumière de travaux récents, cette production serait favorisée, en ce qui concerne les microcystines, par un milieu riche en nitrate, pauvre en ammonium et fortement carencé en fer.La suite à donner à ce travail pourrait être la création d'un observatoire national des efflorescences toxiques.An inquiry covering the whole French territory together with specific studies of natural and artificial reservoirs has been made to assess the human health risk related to the prolifération of toxin producing blue green algae (cyanobacteria). The conclusions show that any lentic ecosystem can be affected like it has been shown already in other countries all over the world and more specifically within the EU. The main genus concemed are: Microcystis, Planktothrix, Anabœna and Cylindrospermopsis.Blooms can occur juring the whole year since some species are well adapted to cold water and are not clearly linked with the trophic status of the aquatic ecosystem.The toxinic production is the largest when the cyanobacteria populations contain only a few number of species. The results of recent works are well correlated with our findings which show that the production of toxic heptapeptides (microcystins) could be correlated with high levels of nitrate and depletions of ammonium and iron.The follow up of this work should now include the set up of a national observatory of toxic algal blooms

    PHOTOCHEMISTRY OF PHYCOBILIPROTEINS

    Get PDF
    Native PEC from the cyanobacterium, Mastigocladus laminosus, and its isolated α-subunit show photoreversibly photochromic reactions with difference-maxima around 502 and 570 nm in the spectral region of the α-84 phycoviolobilin chromophore. (b) Native PEC and its β-subunit show little if any reversible photochemistry in the 600–620 nm region, where the phycocyanobilin chromophores on the β-subunit absorb maximally, (c) Reversible photochemistry is retained in ureadenatured PEC at pH = 7.0 or pH ≤ 3. The difference maxima are shifted to 510 and 600 nm, and the amplitudes are decreased. An irreversible absorbance increase occurs around 670 nm (pH ≤ 3). (d) The amplitude of the reversible photoreaction difference spectrum is maximum in the presence of 4–5 M urea or 1 M KSCN, conditions known to dissociate phycobiliprotein aggregates into monomers. At the same time, the phycocyanobilin chromophore(s) are bleached irreversibly, (e) The amplitude becomes very small in high aggregates, e.g. in phycobilisomes. (f) In a reciprocal manner, the phototransformation of native PEC leads to a reversible shift of its aggregation equilibrium between trimer and monomer. The latter is favored by orange, the former by green light, (g) It is concluded that the phycoviolobilin chromophore of PEC is responsible for reversible photochemistry in PEC, and that there is not only an influence of aggregation state on photochemistry, but also vice versa an effect of the status of the chromophore on aggregation state. This could constitute a primary signal in the putative function as sensory pigment, either directly, or indirectly via the release of other polypeptides, via photodynamic effects, or the like

    Influence of chromophores on quarternary structure of phycobiliproteins from the cyanobacterium, Mastigocladus laminosus

    Get PDF
    Chromophores of C-phycocyanin and phycoerythrο-cyanin have been chemically modified by reduction to rubins , bleaching , photoisomerization , or perturbation with bulky substituents. Pigments containing modified chromophores, or hybrids containing modified and unmodified chromophores in individual protomers have been prepared. All modifications inhibit the association of the (aß)-protomers of these pigments to higher aggregates. The results demonstrate a pronounced effect of the state of the chromophores on biliprotein quaternary structure. It may be important in phycobi1isome assembly , and also in the dual function of biliproteins as (i) antenna pigments for photosynthesis and (ii) reaction centers for photomor-phogenesis

    A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently established methods to identify viable and non-viable cells of cyanobacteria are either time-consuming (eg. plating) or preparation-intensive (eg. fluorescent staining). In this paper we present a new and fast viability assay for unicellular cyanobacteria, which uses red chlorophyll fluorescence and an unspecific green autofluorescence for the differentiation of viable and non-viable cells without the need of sample preparation.</p> <p>Results</p> <p>The viability assay for unicellular cyanobacteria using red and green autofluorescence was established and validated for the model organism <it>Synechocystis </it>sp. PCC 6803. Both autofluorescence signals could be observed simultaneously allowing a direct classification of viable and non-viable cells. The results were confirmed by plating/colony count, absorption spectra and chlorophyll measurements. The use of an automated fluorescence microscope and a novel ImageJ based image analysis plugin allow a semi-automated analysis.</p> <p>Conclusions</p> <p>The new method simplifies the process of viability analysis and allows a quick and accurate analysis. Furthermore results indicate that a combination of the new assay with absorption spectra or chlorophyll concentration measurements allows the estimation of the vitality of cells.</p

    A Day in the Life of Microcystis aeruginosa Strain PCC 7806 as Revealed by a Transcriptomic Analysis

    Get PDF
    The cyanobacterium, Microcystis aeruginosa, is able to proliferate in a wide range of freshwater ecosystems and to produce many secondary metabolites that are a threat to human and animal health. The dynamic of this production and more globally the metabolism of this species is still poorly known. A DNA microarray based on the genome of M. aeruginosa PCC 7806 was constructed and used to study the dynamics of gene expression in this cyanobacterium during the light/dark cycle, because light is a critical factor for this species, like for other photosynthetic microorganisms. This first application of transcriptomics to a Microcystis species has revealed that more than 25% of the genes displayed significant changes in their transcript abundance during the light/dark cycle and in particular during the dark/light transition. The metabolism of M. aeruginosa is compartmentalized between the light period, during which carbon uptake, photosynthesis and the reductive pentose phosphate pathway lead to the synthesis of glycogen, and the dark period, during which glycogen degradation, the oxidative pentose phosphate pathway, the TCA branched pathway and ammonium uptake promote amino acid biosynthesis. We also show that the biosynthesis of secondary metabolites, such as microcystins, aeruginosin and cyanopeptolin, occur essentially during the light period, suggesting that these metabolites may interact with the diurnal part of the central metabolism

    Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium

    Get PDF
    Background The colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There has been little investigation of the genomics of these cyanobacteria. Results Deciphering the 5,172,804 bp sequence of Microcystis aeruginosa PCC 7806 has revealed the high plasticity of its genome: 11.7% DNA repeats containing more than 1,000 bases, 6.8% putative transposases and 21 putative restriction enzymes. Compared to the genomes of other cyanobacterial lineages, strain PCC 7806 contains a large number of atypical genes that may have been acquired by lateral transfers. Metabolic pathways, such as fermentation and a methionine salvage pathway, have been identified, Conclusion Microcystis aeruginosa PCC 7806 appears to have adopted an evolutionary strategy relying on unusual genome plasticity to adapt to eutrophic freshwater ecosystems, a property shared by another strain of M. aeruginosa (NIES-843). Comparisons of the genomes of PCC 7806 and other cyanobacterial strains indicate that a similar strategy may have also been used by the marine strain Crocosphaera watsonii WH8501 to adapt to other ecological niches, such as oligotrophic open oceans.

    Regulation of nitrogen metabolism in the marine diazotroph Trichodesmium IMS101 under varying temperatures and atmospheric CO2 concentrations

    Get PDF
    We examined the influence of forecasted changes in global temperatures and pCO2 on N2 fixation and assimilation in the ecologically important cyanobacterium Trichodesmium spp. Changes of mRNA transcripts (nifH, glnA, hetR, psbA, psaB), protein (nitrogenase, glutamine synthetase) pools and enzymatic activity (nitrogenase) were measured under varying pCO2 and temperatures. High pCO2 shifted transcript patterns of all genes, resulting in a more synchronized diel expression. Under the same conditions, we did not observe any significant changes in the protein pools or in total cellular allocations of carbon and nitrogen (i.e. C : N ratio remained stable). Independently of temperature, high pCO2 (900 µatm) elevated N2 fixation rates. Levels of the key enzymes, nitrogenase and glutamine synthetase that mediate nitrogen assimilation did not increase, implying that the high pCO2 allowed higher reaction turnover rates through these key enzymes. Moreover, increased temperatures and high pCO2 resulted in higher C : P ratios. The plasticity in phosphorous stoichiometry combined with higher enzymatic efficiencies lead to higher growth rates. In cyanobacteria photosynthesis, carbon uptake, respiration, N2 fixation and nitrogen assimilation share cellular components. We propose that shifted cellular resource and energy allocation among those components will enable Trichodesmium grown at elevated temperatures and pCO2 to extend its niche in the future ocean, through both tolerance of a broader temperature range and higher P plasticity

    Halogenase Genes in Nonribosomal Peptide Synthetase Gene Clusters of Microcystis (Cyanobacteria): Sporadic Distribution and Evolution

    Get PDF
    Cyanobacteria of the genus Microcystis are known to produce secondary metabolites of large structural diversity by nonribosomal peptide synthetase (NRPS) pathways. For a number of such compounds, halogenated congeners have been reported along with nonhalogenated ones. In the present study, chlorinated cyanopeptolin- and/or aeruginosin-type peptides were detected by mass spectrometry in 17 out of 28 axenic strains of Microcystis. In these strains, a halogenase gene was identified between 2 genes coding for NRPS modules in respective gene clusters, whereas it was consistently absent when the strains produced only nonchlorinated corresponding congeners. Nucleotide sequences were obtained for 12 complete halogenase genes and 14 intermodule regions of gene clusters lacking a halogenase gene or containing only fragments of it. When a halogenase gene was found absent, a specific, identical excision pattern was observed for both synthetase gene clusters in most strains. A phylogenetic analysis including other bacterial halogenases showed that the NRPS-related halogenases of Microcystis form a monophyletic group divided into 2 subgroups, corresponding to either the cyanopeptolin or the aeruginosin peptide synthetases. The distribution of these peptide synthetase gene clusters, among the tested Microcystis strains, was found in relative agreement with their phylogeny reconstructed from 16S–23S rDNA intergenic spacer sequences, whereas the distribution of the associated halogenase genes appears to be sporadic. The presented data suggest that in cyanobacteria these prevalent halogenase genes originated from an ancient horizontal gene transfer followed by duplication in the cyanobacterial lineage. We propose an evolutionary scenario implying repeated gene losses to explain the distribution of halogenase genes in 2 NRPS gene clusters that subsequently defines the seemingly erratic production of halogenated and nonhalogenated aeruginosins and cyanopeptolins among Microcystis strains
    corecore