148 research outputs found

    Temperature-related timing of the spring bloom and match between phytoplankton and zooplankton

    Get PDF
    Global warming is causing changes in the food web structure and seasonal plankton dynamics. The Baltic Sea is one of the fastest-warming sea areas and warming consequently affects the timing and magnitude of phytoplankton blooms. Based on available Chlorophyll a data from nine years between 1979 and 2018, from the entrance to the Gulf of Finland, we studied the timing of the phytoplankton spring bloom in relation to spring seawater temperature. We found the peak of the bloom to occur earlier in years with higher spring seawater temperature. In warmer years, there was also a shorter time lag between phytoplankton and zooplankton biomass peaks. In addition, it seems as the spring bloom total biomass has decreased with time, with more extensive summer blooms during later years, in line with the general trend observed in the Baltic Sea. The spring bloom has traditionally been considered the most important part of the season, but we argue that the whole growth season should be investigated since summer blooms appear to increase with warming.Peer reviewe

    Om uniformer och tjänstetecken för tullverket i Finland

    Get PDF

    Contrasting patterns of carbon cycling and dissolved organic matter processing in two phytoplankton-bacteria communities

    Get PDF
    Microbial consumption of phytoplankton-derived organic carbon in the pelagic food web is an important component of the global C cycle. We studied C cycling in two phytoplankton-bacteria systems (non-axenic cultures of a dinoflagellate Apocalathium malmogiense and a cryptophyte Rhodomonas marina) in two complementary experiments. In the first experiment we grew phytoplankton and bacteria in nutrient-replete conditions and followed C processing at early exponential growth phase and twice later when the community had grown denser. Cell-specific primary production and total community respiration were up to 4 and 7 times higher, respectively, in the A. malmogiense treatments. Based on the optical signals, accumulating dissolved organic C (DOC) was degraded more in the R. marina treatments, and the rate of bacterial production to primary production was higher. Thus, the flow of C from phytoplankton to bacteria was relatively higher in R. marina treatments than in A. malmogiense treatments, which was further supported by faster C-14 transfer from phytoplankton to bacterial biomass. In the second experiment we investigated consumption of the phytoplankton-derived DOC by bacteria. DOC consumption and transformation, bacterial production, and bacterial respiration were all higher in R. marina treatments. In both experiments A. malmogiense supported a bacterial community predominated by bacteria specialized in the utilization of less labile DOC (class Bacteroidia), whereas R. marina supported a community predominated by copiotrophic Alphaand Gammaproteobacteria. Our findings suggest that large dinoflagellates cycle relatively more C between phytoplankton biomass and the inorganic C pool, whereas small cryptophytes direct relatively more C to the microbial loop.Peer reviewe

    Viability of pico- and nanophytoplankton in the Baltic Sea during spring

    Get PDF
    Phytoplankton cell death is an important process in marine food webs, but the viability of natural phytoplankton communities remains unexplored in many ecosystems. In this study, we measured the viability of natural pico- and nanophytoplankton communities in the central and southern parts of the Baltic Sea (55°21′ N, 17°06′ E–60°18′ N, 19°14′ E) during spring (4th–15th April 2016) to assess differences among phytoplankton groups and the potential relationship between cell death and temperature, and inorganic nutrient availability. Cell viability was determined by SYTOX Green cell staining and flow cytometry at a total of 27 stations representing differing hydrographic regimes. Three general groups of phytoplankton (picocyanobacteria, picoeukaryotes, and nanophytoplankton) were identified by cytometry using pigment fluorescence and light scatter characteristics. The picocyanobacteria and picoeukaryotes had significantly higher cell viability than the nanophytoplankton population at all depths throughout the study area. Viability correlated positively with the photosynthetic efficiency (Fv/Fm, maximum quantum yield of photosystem II) as measured on the total phytoplankton community. However, an anticipated correlation with dissolved organic carbon was not observed. We found that the abiotic factors suggested to affect phytoplankton viability in other marine ecosystems were not as important in the Baltic Sea, and other biotic processes, e.g. processes related to species succession could have a more pronounced role.peerReviewe

    Seasonal Variability in Benthic-Pelagic Coupling : Quantifying Organic Matter Inputs to the Seafloor and Benthic Macrofauna Using a Multi-Marker Approach

    Get PDF
    The exchange between the water column and the seafloor is a complex process, and is particularly intensive in the shallow waters of highly productive coastal areas, where the temporal variability in the inputs of pelagic organic matter will determine many aspects of the benthic community structure. However, few studies have focused on the seasonality of inputs of organic matter to the seafloor, and on the consequent dynamics and time scales of response of benthic consumers. We conducted a 1-year study where we repeatedly sampled multiple organic compounds traditionally used as markers to study the link between the pelagic organic matter inputs and the seafloor, and the potential response of benthic macrofauna to seasonal trends in phytoplankton biomass. We simultaneously quantified the particulate organic matter in the water column, the sinking material and different seafloor compartments, and analyzed it for pigments, organic carbon and nitrogen content, C/N ratio, and stable isotopes. Seafloor sediment was also analyzed for total lipids, and the dominant macrobenthic species for isotopic signatures. Results showed a major deposition of fresh organic matter during the spring bloom followed by more degraded organic matter inputs during the late summer bloom and even lower quality of the organic matter reaching the seafloor during winter. Strong positive relationships between water column and sedimentary pigments suggest that phytoplankton was the main source of carbon to the seafloor. The isotopic signatures of the dominant macrobenthic species suggest a fast response to the organic matter inputs from the water column. However, different species responded differently to the deposition of organic matter. Macoma balthica and Marenzelleria spp. fed on more reworked and degraded sedimentary material, while Monoporeia affinis showed a shift in the feeding habits according to its life stage, with adult individuals feeding on fresher material than juveniles did. Our study highlights the seasonal variability of the benthic-pelagic coupling and the utility of a multi-marker approach to follow the temporal inputs of organic matter from the water column to the seafloor and benthic organisms.Peer reviewe

    Local-scale projections of coral reef futures and implications of the Paris Agreement

    Get PDF
    International audienceIncreasingly frequent severe coral bleaching is among the greatest threats to coral reefs posed by climate change. Global climate models (GCMs) project great spatial variation in the timing of annual severe bleaching (ASB) conditions; a point at which reefs are certain to change and recovery will be limited. However, previous model-resolution projections (~1 × 1°) are too coarse to inform conservation planning. To meet the need for higher-resolution projections, we generated statistically downscaled projections (4-km resolution) for all coral reefs; these projections reveal high local-scale variation in ASB. Timing of ASB varies >10 years in 71 of the 87 countries and territories with >500 km 2 of reef area. Emissions scenario RCP4.5 represents lower emissions mid-century than will eventuate if pledges made following the 2015 Paris Climate Change Conference (COP21) become reality. These pledges do little to provide reefs with more time to adapt and acclimate prior to severe bleaching conditions occurring annually. RCP4.5 adds 11 years to the global average ASB timing when compared to RCP8.5; however, >75% of reefs still experience ASB before 2070 under RCP4.5. Coral reef futures clearly vary greatly among and within countries, indicating the projections warrant consideration in most reef areas during conservation and management planning

    The effects of the 2004 Tsunami on mainland India and the Andaman and Nicobar Islands

    Get PDF
    Mortality from the tsunamis was high, with more than 7,000 deaths in the Nicobar group alone (the final number may never be known as many indigenous people on remote islands may have perished). On the mainland, there were a similar number of fatalities ; The greatest losses were in fishing communities although the waves destroyed roads, jetties, other basic infrastructure and entire villages; There was major damage to the coastal resources of southeast India, particularly to mangrove and coastal forests. On the Andaman and Nicobar Islands there was considerable damage to the coral reefs and beaches, as well as the forests; The earthquakes changed the bathymetry of the coral reefs and coasts of the Andaman and Nicobars: reefs in the South Andamans to the Nicobars subsided by 1 - 3 metres; many reefs in the northern Andamans were uplifted out of the water and died; and some beaches have almost disappeared, while new beaches have formed; There was major damage to large areas of coral reefs of the Andamans and Nicobars, particularly due to debris being washed off the land and smothering by sediments; Mainland coral reefs in the Gulf of Mannar and elsewhere suffered very minor, localised damage. Many mainland beaches were seriously eroded; and The affected reefs are expected to recover within 5-10 years, if there is effective resource management and enforcement of legislation controlling destructive fishing, coral mining, over-harvesting of reef resources, coastal development, sedimentation and pollution

    Organic matter remineralization in marine sediments : A Pan-Arctic synthesis

    Get PDF
    Natural Environment Research Council (GrantNumber(s): NE/J023094/1; Grant recipient(s): Ursula Witte) ArcticNet (GrantNumber(s): Hotspot biodiversity project; Grant recipient(s): Philippe Archambault)Peer reviewedPublisher PD

    Tracking seasonal changes in North Sea zooplankton trophic dynamics using stable isotopes

    Get PDF
    Trophodynamics of meso-zooplankton in the North Sea (NS) were assessed at a site in the southern NS, and at a shallow and a deep site in the central NS. Offshore and neritic species from different ecological niches, including Calanus spp., Temora spp. and Sagitta spp., were collected during seven cruises over 14 months from 2007 to 2008. Bulk stable isotope (SI) analysis, phospholipid-derived fatty acid (PLFA) compositions, and δ 13CPLFA data of meso-zooplankton and particulate organic matter (POM) were used to describe changes in zooplankton relative trophic positions (RTPs) and trophodynamics. The aim of the study was to test the hypothesis that the RTPs of zooplankton in the North Sea vary spatially and seasonally, in response to hydrographic variability, with the microbial food web playing an important role at times. Zooplankton RTPs tended to be higher during winter and lower during the phytoplankton bloom in spring. RTPs were highest for predators such as Sagitta sp. and Calanus helgolandicus and lowest for small copepods such as Pseudocalanus elongatus and zoea larvae (Brachyura). δ 15NPOM-based RTPs were only moderate surrogates for animals’ ecological niches, because of the plasticity in source materials from the herbivorous and the microbial loop food web. Common (16:0) and essential (eicosapentaenoic acid, EPA and docosahexaenoic acid, DHA) structural lipids showed relatively constant abundances. This could be explained by incorporation of PLFAs with δ 13C signatures which followed seasonal changes in bulk δ 13CPOM and PLFA δ 13CPOM signatures. This study highlighted the complementarity of three biogeochemical approaches for trophodynamic studies and substantiated conceptual views of size-based food web analysis, in which small individuals of large species may be functionally equivalent to large individuals of small species. Seasonal and spatial variability was also important in altering the relative importance of the herbivorous and microbial food webs
    corecore