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Abstract Climate change in the Arctic is ongoing and causes drastic modification on the ecosystem
functioning. In soft-bottom environments, organic matter remineralization is considered an important
ecosystem function. Here we provide a large-scale assessment of the current knowledge on the benthic
organicmatter remineralization and its potential response to climate change. Sediment oxygendemand (SOD)
values (n= 1154), measured throughout the Arctic, were gathered from 30 publications and 16 databases, and
nutrient flux values, available in a far lesser extent (n< 80), were also compiled. Generalized additive models
were used to estimate the influence of explanatory variables on benthic oxygen fluxes and for interpolating
SOD to the whole Arctic region. This first Pan-Arctic review of the distributions of SOD showed that oxygen
fluxes strongly depended on water depth, i.e., followed the general trend observed for other regions, and also
on the availability of labile organic matter. The continental shelves (representing ~50% of Arctic Ocean’s total
area) were characterized by the highest SOD values (10.5 ± 7.9mmolO2m

�2 d�1), and differences among
shelves were observed; SOD values in inflow, interior, and outflow shelves were 11.8 ± 8.0, 6.2 ± 5.6, and
3.9 ± 3.5mmolO2m

�2 d�1, respectively. Moreover, seasonal variation in SOD changed significantly among
areas. The interpolation based on the best fitted model showed high respiration in the inflow and interior
shelves. In the inflow shelves, characterized by productive waters, benthic activities replenish bottom water
with nutrients which may augment primary productivity, whereas sediments from the interior shelves,
e.g., under the direct influence of the Mackenzie River, consume nutrients.

1. Introduction

Ecosystem function, which encompasses compartments (e.g., stocks of materials) and process rates (e.g.,
remineralization of organic matter (OM), fluxes of energy, and matter among compartments), is strongly
influenced by factors such as resource availability, disturbance regimes, biodiversity, and, more recently, cli-
mate change. Climate change is clearly and fundamentally altering marine ecosystems, and the most striking
impacts can be seen in the Arctic Ocean [Hoegh-Guldberg and Bruno, 2010] where the drastic loss of sea ice
caused by the significant warming experienced (National Snow and Ice Data Center data, November 2015,
https://nsidc.org/cryosphere/sotc/sea_ice.html) is among the most noticeable signs of disruption. However,
warming-related mechanisms also contribute to the reduction of sea ice such as the increase of heat fluxes
into the Arctic Ocean, the increase in the amount of solar radiation absorbed by the Arctic, and the increase
in cloudiness [Woodgate et al., 2006; Serreze et al., 2007; Stroeve et al., 2012; Bélanger et al., 2013]. Other signs
of disruption are the rise in freshwater runoff [Haine et al., 2015] and the melting permafrost [Schuur et al.,
2008]. In terms of ecosystem functioning, these rapid changes will likely affect the patterns of primary
production [Carroll and Carroll, 2003; Wassmann and Reigstad, 2011] and, hence, the resource availability
for pelagic and benthic communities, which in turnwill affect rates and pathways of organicmatter processing
(e.g., flux to the seafloor and benthic OM remineralization).

In theArctic, sea ice algae andphytoplanktonare the twomainprimaryproducers at thebasis of the foodchain.
Both are consumed by herbivorous zooplankton [Michel et al., 1996; Søreide et al., 2010; Leu et al., 2011] which
are in turn consumedbyhigher trophic levels such as birds andfishes [Darnis et al., 2012],while simultaneously,
heterotrophic bacteria and the rest of the microbial loop use and remineralize a nonnegligible part of the
primary production [Kirchman et al., 2009a, 2009b]. Due to the strong seasonality in light and sea ice regimes,
primary production (PP) in the Arctic occurs over a short period of time and widely varies at a regional scale
depending on the physical property of the environment [Sakshaug, 2004; Pabi et al., 2008; Ardyna et al., 2013,
2014]. Export flux and pelagic-benthic coupling further depend on oceanographic conditions (e.g., mixing
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and depth) as well as the primary (e.g., standing stocks and phytoplankton taxonomy) and secondary produc-
tion regimes (e.g., grazing rates and fecal pellet production). For instance, a low zooplankton grazing capacity
during the initial bloom can result in tight pelagic-benthic coupling [Gaillard et al., 2015] due to the pulsed
sedimentation of relatively fresh phytodetritus to the benthos [Renaud et al., 2007b; Tamelander et al.,
2008]. Indeed, several studies show that benthic (bacterial and faunal) communities consume and actively
degrade freshly deposited OM produced in top layers of the ocean [Piepenburg et al., 1995; McMahon et al.,
2006; Sun et al., 2009; Boetius et al., 2013; Gaillard et al., 2015].

The remineralization of OM in soft-bottom environments is considered an important ecosystem process
[Jahnke, 1996], and organic matter flux to and remineralization at the seafloor, measured as O2 consumption,
have been studied on many occasions in the Arctic (see references in section 2), especially in the Canadian
[Grant et al., 2002; Renaud et al., 2007b; Darnis et al., 2012; Link, 2012] and the Amerasian Arctic [Grebmeier
et al., 2006b; Grebmeier, 2012; Mathis et al., 2014]. In contrast, benthic nutrient fluxes (silicate, phosphate,
nitrate, nitrite, and ammonium) have only been determined on few occasions [Devol et al., 1997; Glud
et al., 2000; Kenchington et al., 2011; Lein et al., 2013; Link et al., 2013a, 2013b; Mathis et al., 2014] despite
the fact that this process is important for the replenishment of nutrients in bottom waters and, ultimately,
stimulation of surface water primary productivity. Sediment oxygen demand (SOD) has been shown to
depend on resource availability [Boetius and Damm, 1998; Grant et al., 2002; Clough et al., 2005; Grebmeier
et al., 2006b; Renaud et al., 2008; Link et al., 2011, 2013a, 2013b; Roy et al., 2014], which is often expressed
as sediment organic carbon (OC) or pigment content as proxies for OC supply to the benthos
[Grebmeier, 2012].

It is clear that climate change induces physical change and, subsequently, ecological shifts. Many models of
phytoplankton PP in the Arctic Ocean estimated a 15–25% increase in PP over a decade (1998–2010), mainly
as a result of an increase in the extent and duration of open water areas andmelting ponds [Arrigo et al., 2008;
Pabi et al., 2008; Arrigo and van Dijken, 2011; Bélanger et al., 2013; Petrenko et al., 2013]. Changes in the total
amount of PP have also been accompanied by changes in the onset of spring blooms [Kahru et al., 2011; Ji
et al., 2013], bloom phenology (i.e. occurrence of second bloom in fall [Ardyna et al., 2014]), and shifts in spe-
cies’ size composition [Li et al., 2009; Fujiwara et al., 2011]. Moreover, the thinning of sea ice cover and the
increased melt-pond cover could enhance under sea ice phytoplanktonic productivity [Arrigo et al., 2012;
Lowry et al., 2014] and favor ice-algae export [Boetius et al., 2013]. These changes will likely induce shifts in
secondary production [Olli et al., 2007] and export flux (whether it is in terms of quantity, quality, or timing)
[Lalande et al., 2009] which will directly affect the benthic ecosystem functions and ecosystem services such
as the rates of organic carbon remineralization or sequestration [Findlay et al., 2015].

In order to forecast and adapt to the consequences of both climate change and potentially increased human
activities related to the exploitation of marine resources (e.g., extraction of oil and natural gas and fisheries),
large-scale baselines for key processes such as benthic OM remineralization in polar latitudes are urgently
needed. Nevertheless, despite the long history of benthic biogeochemical research in the Arctic, no publica-
tion has attempted to synthesize C remineralization data at a Pan-Arctic scale, and it is the objective of this
paper to provide a review of the current knowledge of the benthic OM remineralization in the Arctic and their
potential responses to climate change. Spatial and seasonal distributions of SOD as well as nutrient fluxes are
analyzed. We hypothesize that (1) higher SOD is observed in shelf areas receiving an inflow of nutrient-rich
water (Pacific and Atlantic) compared to that in outflow shelves, that (2) water depth and food supply to
the benthos have a high influence on the SOD pattern, and that (3) seasonal variability in oxygen fluxes
mirrors the processes occurring in the water column (e.g., timing of bloom and standing stocks). Different
models are proposed in order to interpolate SOD to a Pan-Arctic scale and provide complete spatial coverage.
An assessment of emerging spatial and temporal patterns, and comparison with other regions, is made.
Finally, predictions for future regional trends in oxygen demand in response to ongoing climatic and
ecological changes in the Arctic are proposed and discussed.

2. Methods
2.1. Sediment Oxygen Demand

Measurements of SOD (mmolO2m
�2 d�1) were gathered from 30 publications and 16 data archives

(see references in Table 1) throughout the Arctic region, following the boundaries established by the
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Arctic Monitoring and Assessment Program (www.amap.no). In total, the 1154 values could be compiled that
spread over three decades (from 1980 to 2013). The Bering Sea (552 data points) is particularly well covered,
and a reasonable amount of data could be sourced for the Greenland, Chukchi, and Beaufort Seas and central
Arctic Ocean (86 to 170 data points; Figure 1a). In contrast, the Laptev, Kara, and East Siberian Seas have
received little or no attention (0 to 20 data points). Because of difficulties in sampling during the winter,
the available data mainly cover the period from March to September (Figure 1b).

Where required, SOD values were converted from benthic carbon remineralization values (mgCm�2 d�1) by
using the respiration coefficient (varies between 0.7 and 0.8) used in the respective publications. Most data
stem from either in situ benthic flux chamber or ex situ shipboard sediment core incubation experiments
by usingWinkler titration, noninvasive probes, and polarographic electrodes to determine changes in oxygen
concentrations in the overlying water column, and thus represent sediment total oxygen uptake (TOU). There
are also a small number (n= 81) of diffusive oxygen uptake (DOU)measurements based on pore water oxygen
microprofiles acquired by usingmicroelectrodes [i.e., Sauter et al., 2001a, 2001b (n=32 values; Greenland Sea);
Wollenburg and Kuhnt, 2000a, 2000b (n=28 values; Laptev Sea); Boetius and Damm, 1998 (n=19 values;
Arctic Basin); Boetius et al., 2013 (n=2; Arctic Basin)]. The difference between TOU and DOU corresponds
to the faunal respiration and irrigation, and the bias introduced by the use of both approaches was
reviewed by Glud [2008], who showed that TOU is markedly higher than DOU when benthic community
respiration is high, whereas values converge at low diagenetic activity and/or little fauna are present
[Glud, 2008]. DOU data included in this study were acquired mainly in deep water and/or areas where
the diagenetic activity was relatively low. Eighty percent of values fell below 1mmolO2m

�2 d�1, and the
remainder did not exceed 3.51mmolO2m

�2 d�1 [Sauter et al., 2001a, 2001b; Boetius and Damm, 1998];
we therefore assume that the use of DOU instead of TOU will be of minor consequence for the following
analysis (i.e., models).

2.2. Nutrient Fluxes

Benthic nutrient fluxes have been measured less frequently, and nitrate (NO3
�) + nitrite (NO2

�), ammonium
(NH4

+), phosphate (PO4
3�), and silicate (SiO2) flux data employed in this analysis were extracted from 11 pub-

lications [Grebmeier and Cooper, 1995; Rysgaard et al., 1996, 1998, 2004; Devol et al., 1997; Glud et al., 1998,
2000; Christensen, 2006; Link et al., 2013a, 2013b; Morata et al., 2015]. In total, 72, 73, 49, and 61 values of
nitrate (or nitrate + nitrite), ammonium, phosphate, and silicate fluxes, respectively, could be gathered for this
review. All data points were generated based on the change in nutrient concentrations in the overlying sea-
water during sediment core incubations. For nitrate/nitrite fluxes, the majority of the publications have mea-
sured nitrate and nitrite (NO2

�+NO3
�) simultaneously, whereas a few studies measured them separately

[Devol et al., 1997; Glud et al., 2000; Link, 2012; Link et al., 2013a, 2013b]. Link [2012] and Link et al. [2013a,
2013b] showed that nitrite fluxes in Arctic sediments are extremely low compared to nitrate fluxes, and thus,
it was assumed that the bias introduced by compiling the different results will be negligible. Phosphate fluxes
were mostly measured as PO4

3� [Rysgaard et al., 1996, 1998; Glud et al., 2000; Morata et al., 2015], but Link
et al. [2013a, 2013b] measured PO4

2�
fluxes.

2.3. Chlorophyll a at Sediment Interface

Concurrently to the benthic oxygen and nutrient flux data, a large number of chlorophyll a (chl a) data
(mgm�2) were assembled (n= 1251 values; Figure S1 in the supporting information and see references in
Table 1). The majority of data in this data set refer to chl a concentrations in the top first centimeter of sedi-
ment, but some studies report integrated results for the top 2 cm (n=76). For standardization purposes, it
was assumed that 60% of chl a would have occurred in the top centimeter [Soltwedel and Vopel, 2001;
Morata et al., 2011]. Publications reporting bulk chl a concentrations for the top 5 or 10 cm were excluded
from this analysis in order to avoid the insertion of large errors.

2.4. Data Presentation, Statistical Analysis, and Models

The maps of benthic oxygen and nutrient fluxes were created by using the free software Ocean Data View
[Schlitzer, 2007]. All SOD as well as nutrient flux values were plotted together in order to provide a Pan-
Arctic distribution pattern of the benthic remineralization function. In parallel, seasonal distribution patterns
of SOD were also depicted, with boreal seasons being defined as follows: spring (1 March to 31 May), summer
(1 June to 31 August), autumn (1 September to 30 November), and winter (1 December to 28 February).
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Table 1. Summary of Surface Sediment Chlorophyll a (chl a, mgm�2) and Sediment Oxygen Demand (SOD, mmol O2m
�2 d�1) in the Arctic Region

Region Year Season Depth (m)
Sediment chl a

(mgm�2)
SOD

(mmol O2m
�2 d�1) References

Western Barents Sea 2003–2005 spring-summer 195–503 0.36–24.12 2.30–7.30 [Renaud et al., 2008]
Barents (Svalbard) and
Norwegian Seas
(northern Norway)

1995 autumn 115–329 3.60–16.40 [Glud et al., 1998]

Barents Sea (Svalbard) 1991 summer 170–2577 1.85–11.20 [Hulth et al., 1994; Piepenburg et al.,
1995]

Barents Sea (NE
Svalbard Shelf) and
Arctic Ocean
(Nansen Basin)

1980 summer 226–3920 1.71–12.00 [Pfannkuche and Thiel, 1987]

Northern Barents Sea
(Svalbard)

2003–2004 spring-summer 17–2700 1.8–58.8 [Søreide et al., 2013]

Barents Sea (Svalbard,
Rijpfjorden)

2012 winter 272 8.80 4.25 [Morata et al., 2015]

Laptev Sea, Arctic Ocean 1993 autumn 37–3237 0.00–45.6 0.07–2.34a [Boetius and Damm, 1998]
Laptev Sea, Arctic Ocean 1995 summer-autumn 51–3823 0.20–10.10 0.22–0.99a [Wollenburg and Kuhnt, 2000a,

2000b]b

Arctic Ocean 1994 summer 68–4190 0.00–0.41 [Clough et al., 1997]
Central Arctic Ocean 1998 summer 1270–3170 0.06–0.36 [Schewe, 2001]
Arctic Ocean 2012 summer-autumn 3589–4808 0.98–3.36 0.34–0.41a [Boetius et al., 2013]
Bering Sea 1990 summer 21–72 6.53–32.18 [Grebmeier and Cooper, 1995]
Northern Bering Sea 2006–2007 spring 27–119 2.55–46.53 0.36–27.79 [Grebmeier and Cooper, 2009, 2010,

2014a, 2014b]b

Northern Bering Sea 2008–2009 spring 33–80 0.65–17.44 1.71–11.34 [Grebmeier, 2010a, 2010b;
Grebmeier and Cooper, 2014a,

2014b]b

Bering Sea 2007–2010 spring-summer 40–3941 1.24–24.50 [Devol, 2008]b

Chukchi and Beaufort
Seas, Arctic Ocean

1994/1996/1998 summer 40–3648 0.00–27.80 0.29–20.68 [Clough et al., 2005]

Northern Bering and
Chukchi Seas

1984–1986 summer-autumn 19–54 0.65–45.62 [Grebmeier and McRoy, 1989;
Grebmeier and Cooper, 2014a]b

Bering and Chukchi Seas 2004 summer 35–84 5.51–19.09 10.19–39.57 [Pirtle-Levy et al., 2009; Grebmeier
and Cooper, 2014a, 2014b]b

Bering, Chukchi and
Beaufort Seas
(Western Arctic shelf)

1992–1993 spring-autumn 11–48 5.13–18.00 [Devol et al., 1997]

Chukchi and Beaufort
Seas, Arctic Ocean

2002/2004 spring-summer 28–3274 1.00–37.47 0.33–47.81 [Grebmeier and Cooper, 2004a,
2004b, 2004c, 2004d, 2014a,

2014b]b

Amerasian Arctic 1988–2012 summer-autumn 12–2106 0.10–70.16 0.63–52.64 [Grebmeier and Cooper, 2014a,
2014b; Grebmeier et al., 2015a]b

Beaufort Sea and
Arctic Ocean

2004 summer 50–3894 0.22–7.68 [Christensen, 2006]b

Eastern Beaufort Sea 2003–2004 summer-autumn 44–420 0.08–9.79 0.00–9.41 [Renaud et al., 2007a]
Beaufort Sea
(Franklin Bay)

2004 winter-summer 250–251 0.49–1.30 [Morata et al., 2011]

Beaufort Sea
(Franklin Bay)

2004 winter-summer 231 1.77–20.22 [Renaud et al., 2007b]

Southeastern Beaufort Sea 2009 summer 47–577 0.27–13.82 0.63–10.52 [Link et al., 2013b]
Southeastern Beaufort Sea
(Amundsen Gulf and
Franklin Bay)

2008 spring-summer 100–595 0.70–11.00 1.21–4.63 [Link et al., 2011]

Beaufort Sea and
Canadian Arctic
Archipelago

2008–2009 summer-autumn 45–810 0.52–19.82 [Darnis et al., 2012; Link, 2012; Link
et al., 2013a]

Canadian High Arctic
(Resolute)

1993 spring-winter 16–87 6.42–10.70 [Welch et al., 1997]

Baffin Bay and Canadian
Arctic Archipelago

2013 summer-autumn 456–794 2.48–12.88 2.41–4.03 (Makela, personal communication)

Baffin Bay and Canadian
Arctic Archipelago

2013 summer 180–830 0.23–54.93 ArcticNet 2013b
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An analysis of covariance (ANCOVA) was carried out, in the statistical analysis environment R [R Core Team,
2015], to examine differences in SOD by using the water depth of sampled stations and the shelf type as
variables. P values below 0.05 are considered statistically significant.

Generalized additive models (GAMs) [Hastie and Tibshirani, 1990] were used to determine the best descriptors
of the distribution of SOD and predicted values for the entire Arctic. This analysis was favored in order to detect
potential nonlinear relationships and to take into account the sampling density. In order to choose the best fit
ting GAMmodel for representation of benthic oxygen fluxes, a step-by-step approach was adopted, which con-
sisted of (1) gradually log-transforming (log(x+1)) the response and then the descriptor variables and (2) the
addition of new terms in the model (i.e., in the incremental complexity of themodel) until thebestfittingmodel
was reached. Log transformationof the data setwas performed in order to smooth thepattern, reduce the effect
of outliers, and meet the validation criteria (normality and heterogeneity) of the model. The descriptor variable
entering first in the model was the water depth (m). In order to consider the influence of labile food supply on
the SOD, the chlorophyll a concentration in sediments was then added as a variable in the models.

The various GAM models were determined by means of R package “gam” (version 1.12 [Hastie, 2015]) at the
statistical analysis environment R [R Core Team, 2015]. The models were compared by using the explained
variance (r2). The predicted values from the fitted models were obtained, either for the original values or
for new values of the predictor variables, using the “predict” function. In order to interpolate SOD at a Pan-
Arctic scale, an Arctic Ocean bathymetry, at a resolution of 1° (n= 7916 values), was used. When sediment
chl a was included in the model as an explanatory variable, an intermediate step was performed in order
to calculate the global chl a distribution in surface sediments. To achieve this, a GAM model was applied
to the larger chl a data set (n= 1251; Figure S1) according to the water depth.

The discrepancy between the estimated (models) and observed (archives) values was highlighted by using
the following equations:

Table 1. (continued)

Region Year Season Depth (m)
Sediment chl a

(mgm�2)
SOD

(mmol O2m
�2 d�1) References

Baffin Bay (North Water
Polynya)

1998 spring-summer 252–680 1.61–5.45 [Grant et al., 2002]

Baffin Bay and Greenland
Sea (East and West
Greenland)

2001–2003 spring-autumn 36–85 3.43–8.27 [Rysgaard et al., 2004]

Western Greenland Sea
(Young Sound)

1996 summer 20–163 3.09–20.12 [Glud et al., 2000]

Western Greenland Sea
(Young Sound)

1996–1997 summer/winter 36 5.10–12.86 [Rysgaard et al., 1998]

Western Greenland Sea
(Young Sound)

1994 summer 40 17.76 [Rysgaard et al., 1996]

Greenland Sea (Northeast
Water Polynya)

1993 spring-summer 187–487 0.26–3.55 [Piepenburg et al., 1997]

Greenland and
Norwegian Seas

1994–1997 spring-winter 189–3627 0.08–3.51a [Sauter et al., 2001a, 2001b]b

Greenland Sea 1992–1993 summer 145–490 0.72–9.12 [Rowe et al., 1997; Rowe, 2002]b

Greenland Sea 1994–1997 summer-autumn 344–3625 0.00–4.32 [Seiler, 1999]b

Greenland Sea
(Northeast Water
Polynya)

1993 spring-summer 330 0.00–1.65 [Ambrose and Renaud, 1997]

Greenland Sea
(Northeast Water
Polynya)

1992 summer 125–515 4.33–27.37 [Ambrose and Renaud, 1995]

Greenland Sea
(Fram Strait)

1999 summer 744–3020 0.10–9.50 [Schewe and Soltwedel, 2003]

Greenland Sea, Arctic Ocean
(Yermark plateau)

1997 summer 481–4268 0.10–24.80 / [Soltwedel et al., 2000]

aMeasurements of dissolved oxygen uptake.
bValues from databases.
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Relative anomaly %ð Þ ¼ SODPredicted � SODObservedð Þ�100
SODObserved

3. Results and Discussion
3.1. Sediment Oxygen Demand and Explanatory Variables
3.1.1. Water Depth
In the Arctic region, sediment oxygen uptake declined with increasing water column depth with a sharp
decrease in the first 200m. In addition, SOD was reduced by more than a third moving from shallow
(0–200m) to deeper (200–500m) continental shelves (Figure 2a). The results from an ANCOVA (water depth
as covariable) showed a significant difference in SOD between inflow (Bering/Chukchi and Barents Seas),
interior (Beaufort, East Siberian, Laptev, and Kara Seas), and outflow (Canadian Archipelago and
Greenland Sea) [Carmack and Wassmann, 2006] shelves (Figure 2b), with a higher activity on the inflow
shelves (11.8 ± 8.0mmolO2m

�2 d�1) than on the interior (6.2 ± 5.6mmolO2m
�2 d�1) or outflow

(3.9 ± 3.5mmol O2m
�2 d�1) shelves. Furthermore, the variability is driven by the water depth of the sta-

tions sampled (medians of 64m, 107m, and 280m, respectively). This relationship was significant
(ANCOVA, variable water depth, p< 0.0001, n= 961). Overall, the continental shelves (wd. 0–500m), which
account for approximately half of the Arctic Ocean’s total area [Jakobsson, 2002], were characterized by high
values of SOD (10.46 ± 7.94mmol O2m

�2 d�1) in comparison to the slope/rise (2.23 ± 2.37mmolO2m
�2 d�1)

and the abyssal plain (1.75 ± 1.70mmolO2m
�2 d�1) (Figure 2a). A similar pattern (i.e., SOD significantly

greater at shallow (<500m) than at deep sites) has previously been observed by Clough et al. [2005] at
regional scale (n=27 stations) during a study completed in the Western Arctic Ocean.

Figure 1. Frequency distributions of number of SOD measurements as a function of (a) Arctic seas and ocean and (b)
months of the year. Asterisk, mainly in the Northern Bering Sea (445 over 552 stations).

Figure 2. Sediment oxygen demand (SOD, mmol O2m
�2 d�1) (a) in the whole Arctic and (b) in the shelves (inflow, interior,

and outflow) as a function of ranges of water depth (m). The inflow shelves include the Bering and Chukchi Seas as well as
western Spitsbergen and Barents Sea; the interior shelves include Kara, Laptev, East Siberian, and Beaufort Seas; and the
outflow shelves include the Canadian Archipelago and Labrador and Greenland Seas [Carmack and Wassmann, 2006].
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The relationship between oxygen
fluxes in marine sediments and water
depth has been well documented for
a wide range of environments
[Christensen, 2000; Andersson et al.,
2004; Middelburg et al., 2005; Glud,
2008], including the Arctic [Boetius
and Damm, 1998; Clough et al.,
2005]. Typically, benthic oxygen
consumption shows an exponential
[see Andersson et al., 2004] or a power
law relationship with water depth
(Figure 3), i.e., a rapid decrease of
SOD, which is in agreement with our
findings. Here GAM analysis showed
that water depth explained up to
49% of the variation of benthic oxy-
gen uptake in log-transformed data
(Table 2). However, exceptions occur,
and Piepenburg et al. [1995], for
example, recorded a reverse relation-
ship with higher benthic oxygen con-
sumption in deep stations (>200m)
than in shallow ones (<200m) in
the northwestern Barents Sea. The
comparison of SODs between various
environments and the Arctic region
(Figure 3) showed not only (1) lower

benthic oxygen fluxes in the Arctic shelves than in the other continental shelves but also (2) that the decrease
in rates with increasing water depth was less steep in the Arctic. Interestingly, both polar regions (Arctic and
Antarctic) exhibit relatively similar pattern of benthic oxygen uptake (in terms of slope). Temperature depen-
dence of oxygen consumption rates has previously been documented [Arnosti et al., 1998; Thamdrup et al.,
1998], and oxygen uptake follows a linear regression with temperature, with the lowest oxygen uptakes
measured in cold temperatures. But while the low temperatures experienced in the polar regions compared
to the rest of the global ocean (temperate and tropical ecosystems) could explain some of the features, the
SOD values from the Arctic shelves are dissimilar to other cold environments such as the deep sea, highlight-
ing that additional factors, such as the food supply, are of relevance.
3.1.2. Resource Availability: Food Supply to the Benthos
Resource availability is an important biotic driver for the benthic ecosystem functions, and the quantity and
quality of food supply (often expressed as organic carbon and pigments) to the benthos are generally related
to the transformative processes occurring in the water column. It is well known that OM fluxes to the benthos
decrease with increasing water depth [Suess, 1980; Buesseler et al., 2007] due to the progressive degradation
of the OM during the sinking phase. The residence time of the particles in the water column, which is mainly
size- and density-dependent, will therefore have an influence on the supply of OM to the benthos and its
functioning: large particles such as ice algal aggregates, fecal pellets, or marine snow (>200μm in diameter)
settle rapidly, whereas smaller particles reside in the water column for longer, become more degraded, and
will have a less significant role in vertical mass fluxes [Suess, 1980]. The degradation processes are especially
pronounced in the first hundred meters of water due to preferential mineralization of the more reactive com-
pounds (such as chl a or lipids) [Andersson et al., 2004]. As expected, chl a concentrations in Arctic sediments
decrease with increasing water depth [Ambrose and Renaud, 1995; Renaud et al., 2007a; Link et al., 2011], as
labile OM produced in the euphotic zone is progressively degraded.

Of course, the amount of OM reaching the seafloor and available to the benthos also depends on the
quantities initially produced in the water column. In the Arctic, primary production varies widely regionally
[Arrigo et al., 2008; Pabi et al., 2008] and is controlled by factors such as advection, water stratification, sea

Figure 3. Benthic oxygen flux-depth relationship found in different marine
environments: polar (Arctic and Antarctic), coastal [Middelburg et al., 2005],
deep sea [Christensen, 2000], and whole ocean/sea [Andersson et al., 2004;
Glud, 2008]. The curve fit on our data set comes from GAM. The SOD values in
the Antarctica are extracted from five publications [Nedwell et al., 1993; Hulth
et al., 1997; Baldwin and Smith, 2003; Hartnett et al., 2008; Link and
Piepenburg, 2013]. The other regression curves used in the publications are
exponential decrease or power law.
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surface temperature, nutrients, and light (e.g., turbidity or ice cover) limitations. The Greenland and
Barents Seas display the highest areal total annual primary productions (148 and 132 TgC yr�1 [Arrigo
and van Dijken, 2011]) mainly due to the largest annual mean open water area [Pabi et al., 2008].
Outflow and interior shelves are characterized by low PP rates per unit area (e.g., Canadian Archipelago

Table 2. Results of GAM Models (Deviance Explained and Smooth Terms) Relating Sediment Oxygen Demand (SOD) to Environmental Variables (Depth and
Chlorophyll a)a

Model Name n Deviance Explained Variables-Smooth Terms GAM Relationship

1 var GAM model –depth 1148b 48.9% s(ldepth); edf = 4.52
F = 200.4; p< 0.0001

1 var GAM model –chl a 561 47% s(lchl a); edf = 5.86
F = 74.29; p< 0.0001

2 var GAM model –depth and chl a 556 57.3% s(ldepth); edf = 1.00
F = 120.32; p< 0.0001
s(lchl a); edf = 6.01
F = 15.57; p< 0.0001

2 var GAM model –depth and chl a with interaction 556 58.9% s(ldepth); edf = 4.73
F = 7.72; p< 0.0001
s(lchl a); edf = 5.35
F = 5.40; p< 0.0001

s(ldepth, lchl a); edf = 3.78
F = 2.53; p = 0.002

aVar means variable, ldepth and lchl amean log(depth + 1) and log(chl a + 1), respectively, and edf means effective degrees of freedom. This table is based on
the study from Orlova et al. [2015] and contains our own data.

bAmong the 1154 SOD values gathered, few (n = 6) were not associated to water depth (m) and thus cannot be used in the “1 var GAM model—depth.”
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and Russian seas; ~20–50 g Cm�2 yr�1 [Sakshaug, 2004]). PP on outflow shelves is mainly governed by the
sea ice condition, the upper mixed layer depth, and nutrient limitations, primarily nitrate [Michel et al., 2015].
In contrast, the inflow shelves receive nutrient-rich (Pacific or Atlantic) water inflows and the annual mean PP
in the Barents and Chukchi Seas is higher and around 100 g Cm�2 yr�1 [Arrigo and van Dijken, 2011; Hunt
et al., 2013]. However, strong patchiness in PP and standing stocks can be observed in these regions. In
the Southern Chukchi Sea, which is fed by the nutrient-rich Anadyr water, PP can locally reach up to
720 g Cm�2 yr�1 [Hunt et al., 2013, and references therein].

SOD is strongly correlated to the availability of labile OM (chl a) [Boetius and Damm, 1998; Grant et al., 2002;
Clough et al., 2005; Grebmeier et al., 2006b; Renaud et al., 2008; Link et al., 2011, 2013a, 2013b] which under-
scores the strong pelagic-benthic coupling in the Arctic region. For instance, in the Canadian Arctic, food
availability was significantly higher at sites with high SOD (“hot spot”) than those with low SOD (“cold spot”)
[Link et al., 2013a]. In this study, GAMs indicate that labile carbon supply (chl a) alone can explain up to 47% of
the variation of SOD in the Arctic. The nutritive quality of the phytodetritus reaching the seabed is particularly
close related to SOD [Morata and Renaud, 2008; Sun et al., 2009], especially during sea ice-covered conditions
when the primary production and export to the benthos are low [Link et al., 2011; Morata et al., 2015]. The
large scatter in the compiled SOD values, especially in the inflow shelves (Figure 2), at similar water depths,
may be driven by strong heterogeneity in the pelagic primary production among sites, as previously detailed
in this section, and the efficiency of export to the seafloor.

3.1.3. Other Potential Explanatory Variables: Zooplankton and Benthic Communities’ Structure
and Activities
Other parameters, which are not taken into account in the models, are also likely explanatory variables for the
SOD patterns, in particular the transformation of OM by zooplankton and benthic communities.

Zooplankton can be a nonnegligible supplier of OM to the benthos through production of fecal pellets (FPs)
and sinking of dead organisms [see Sampei et al., 2004]. Although copepod FPs are mostly retained within
the upper 100m of the water column when phytoplankton concentrations are low [Riser et al., 2002], FP can
represent up to 30–60% of total organic carbon (TOC) export flux in spring/summer [Riser et al., 2002; Sampei
et al., 2004;Wexels Riser et al., 2008]. When periods of high PP match with those of high zooplankton biomass,
the zooplankton grazing activity also regulates the direct export of phytoplankton or ice algae to the benthos.
Zooplankton graze on phytoplankton as well as on ice algae [Michel et al., 1996; Søreide et al., 2010; Leu et al.,
2011] and most of the particulate organic carbon (POC) export are mediated by herbivorous zooplankton.
Zooplankton standing stocks and resulting grazing rates can vary widely between Arctic seas and shelves.
For instance, the Barents Sea exhibits greater biomass of zooplankton than the Chukchi Sea, both defined as
inflow shelves [Hunt et al., 2013, and references therein]. This high biomass is supported by the advective input
of zooplankton by the Atlantic and Arctic water masses. Greater depths and higher zooplankton grazing
pressure likely result in a reduced OM flux to the seafloor compared to the Chukchi Sea [Hunt et al., 2013].

Equally benthic communities exert great influence on benthic carbon remineralization [Piepenburg, 2005].
Macrobenthic community characteristics (in term of biomass, richness, and abundance) can explain an
important part of the respiration pattern [Clough et al., 2005; Grebmeier et al., 2006a; Link et al., 2011,
2013a], especially in the summer [Grant et al., 2002; Link et al., 2011], whereas meiobenthos and microbe-
nthos dominate oxygen consumption in the spring [Grant et al., 2002]. Macrofaunal biomass explained
74% of SOD in the Western Arctic Ocean [Clough et al., 2005], and macrofauna dominate the sediment
respiration in the shelf and upper slope in the Amerasian Arctic, whereas meiofauna and microfauna become
more important in the deep slope and deep basin [Grebmeier et al., 2006b, and references therein].

Macrofauna are also efficient particle mixers and thus the main actors in bioturbation, which in turn is con-
sidered a primary determinant in sediment oxygen concentrations [Solan et al., 2004], as bioturbators
enhance process rates (e.g., benthic carbon remineralization) through complex biogeochemical interactions
[Lohrer et al., 2004]. Arctic benthic macroinfauna responded rapidly to a pulse of fresh food (phytoplankton or
ice algae) [Clough et al., 2005;McMahon et al., 2006; Sun et al., 2007] which initiated bioturbation [Morata et al.,
2015], and SOD is directly affected by the presence of species classified as bioturbators [Michaud et al., 2005].
Surprisingly, functional group richness had a low explanatory power in the SOD in the Canadian Arctic
[Link et al., 2013a]. Nonetheless, these authors highlighted that the abundance of gallery-burrowing
Polychaete species, i.e., bioirrigators, was an explanatory variable for the variations in the fluxes.
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Despite the apparent importance of these parameters on the benthic remineralization function, heterogene-
ity of the methods used (e.g., different units such as dry, wet, and C biomass for benthic biomass) and rarity of
activity measurements such as bioturbation coefficients [Clough et al., 1997; Jørgensen et al., 2005; Morata
et al., 2015] prevented the integration of these parameters into the models.

3.2. Spatial and Seasonal Patterns in Sediment Oxygen Demands

SOD varied significantly between 0 and 52.6mmolO2m
�2 d�1 (Figure 2). The Pan-Arctic distribution of SOD

(observation) is presented in Figure 4. The highest SOD was measured in shallow waters in the Amerasian
Arctic, and particular “hot spots” of SOD were located in the Southern Chukchi Sea (40.7mmolO2m

�2 d�1),
the Northern Bering Sea (45.6mmolO2m

�2 d�1), and head of Barrow Canyon (52.6mmolO2m
�2 d�1).

These areas receive nutrient-rich Pacific water inflow over the shelf, and the Chukchi Sea is known for high
PP [Hill and Cota, 2005; Arrigo et al., 2008; Pabi et al., 2008; for review see Harada, 2016]. Moreover, they are
organic carbon depositional areas [Goñi et al., 2013] largely due to bathymetric features (depressions and can-
yons) [Maslowski et al., 2014;Mathis et al., 2014]. In the last decade, this regionhas been the subject of extensive
research with regard to benthic ecosystem functioning [Grebmeier et al., 2006a, 2006b; Grebmeier, 2012]. The
Northern Bering Sea experienced a major ecosystem shift with a decline of sediment oxygen uptake and
benthic macrofaunal biomass from 1988 to 1998 followed by steady values until 2004 [Grebmeier et al.,
2006a]. In the Chukchi Sea, a decadal survey (1984–2010) revealed that the local hot spots of SOD, i.e., head
of BarrowCanyon and Southern Chukchi Sea, are persistent over this timeperiod [Grebmeier, 2012]. In this area,
the low water temperatures limit the zooplankton communities in terms of abundance, size (dominated by
smaller copepods andmicrozooplankton), andbiological activities [Findlay et al., 2015, and references therein],
and the lowgrazingpressure in thewater columnallows a high carbon export to the sediments [Campbell et al.,
2009]. High SODwas also found in the Barents Sea (around Svalbard Archipelago) and at the Mackenzie Delta
(Beaufort Sea) (Figure 4). Similar to the Bering and Chukchi Seas, the Barents Sea is a highly productive area
[Sakshaug, 2004; Hunt et al., 2013, and references therein], which receives large imports of nutrients from the
Atlantic Ocean. In contrast to other Arctic seas, the Beaufort Sea is considered to be relatively oligotrophic with
lowPP [Carmack et al., 2004; Sakshaug, 2004], while POCexport flux is relatively important (1–12.9 g Cm�2 yr�1

[Harada, 2016, and references therein]). The Mackenzie Delta and its adjacent shelf are strongly influenced
by the Mackenzie River which is the fourth largest river in the Arctic in terms of annual water discharge
(249–333 km3 yr�1 [Dittmar and Kattner, 2003]). In coastal environments, rivers bring important quantities
of dissolved and particulate OM (e.g., vascular plant debris, soils, and freshwater phytoplankton) as well
as nutrients which stimulate several ecosystem functions such as the production, consumption, and remi-
neralization of OM. Although terrestrial C inputs are usually considered as more refractory than marine C
[Wakeham and Canuel, 2006], this source of OM can be actively degraded by microorganisms following
priming with labile organic matter in deltaic/estuarine regions [Bianchi, 2011] and can also represent a
directly used food resource for benthic infauna [Dunton et al., 2012]. Furthermore, riverine nutrient inputs
locally stimulate PP in the water column at the vicinity of the Mackenzie River mouth [Tremblay et al.,
2014], and marine algae-derived carbon can form up to 50% of the TOC in the Mackenzie adjacent shelf
[Goñi et al., 2000]. However, pelagic PP is often limited nearshore due to the light limitation caused by
the high-suspended sediment loads from riverine discharge or shore erosion [Goñi et al., 2000; Rachold
et al., 2000, 2004; Guo et al., 2004]. This would also explain the decrease of SOD at very shallow depth
(<30m) (Figure 3). Despite the fact that the North Water Polynya (NOW) is considered a productive area
(150–200 g Cm�2 yr�1 [Klein et al., 2002; Arrigo et al., 2008; Ardyna et al., 2011]), only moderate SOD values
(~5mmolO2m

�2 d�1) have been measured in this region. Here only 1.4–2.6% of PPC reach the seafloor,
amounting to a total POC at 50mabove bottom [Sampei et al., 2002], probably because of the aforementioned
combination of greater water depths and high zooplankton standing stock. Nonetheless, SOD in the central
part of the NOW reached 8mmolO2m

�2 d�1, and therefore, it was identified as a “hot spot” [Link et al.,
2013a]. The lowest SOD was recorded in the Arctic Basin, the Laptev Sea, and in the deep Greenland Sea, all
of which are characterized by relatively low POC export fluxes (from 0.1 to 1.6 g Cm�2 yr�1 [Harada, 2016,
and references therein]).

Studying seasonal variability in the Arctic is challenging due to logistical constraints posed by the darkness,
extensive sea ice cover, and very low temperatures during the winter months. As a result, observations
recorded during the polar night are scarce (Figures 1b and 5a). Conversely, late spring and early summer

Global Biogeochemical Cycles 10.1002/2016GB005378

BOURGEOIS ET AL. PAN-ARCTIC BENTHIC REMINERALIZATION 199



months are specifically targeted by researchers trying to record the fingerprint of the spring bloom in
sediments and its implication for benthic ecosystem functioning. Thus, the sampling effort directed toward
the Arctic benthic fluxes is strongly skewed, constraining meaningful seasonal comparisons. Nonetheless,
it is possible to observe some patterns. In the Barents and Eastern Beaufort Seas, the SOD exhibited lowest
values in winter, a progressive rise in spring until reaching its peak in summer. The winter nutrient replenish-
ment and the increase in light penetration in the upper water column trigger phytoplankton blooms at the
end of May—early June in these subregions [Ardyna et al., 2013]. In the Amerasian Arctic, strong seasonal and
regional variabilities were observed (Figure 5). The Southeastern Bering Sea displayed higher SOD in spring
than in summer, whereas the opposite pattern was observed in the Southern Chukchi Sea. The Eastern Bering
Sea shelf is known for having a seasonal cycle with high rates of PP in the spring (May) and low rates in the
summer [Rho and Whitledge, 2007; Moran et al., 2012], and the spring bloom is relatively early compared to
other regions [Ardyna et al., 2013]. There is evidence for phytoplankton blooms under first-year ice in the
Chukchi Sea [Lowry et al., 2014], but as marginal ice zone blooms are more common in the southern
Chukchi Sea where ice retreat begins in May [Lowry et al., 2014], we can assume that the difference in timing
of peak SOD between the Bering and Chukchi Seas is related to the timing of sea ice retreat. Thus, the
seasonal pattern observed in the sediments mirrors water column processes and reinforces the concept of
a strong pelagic-benthic coupling in the Arctic [Boetius and Damm, 1998; Grant et al., 2002; Clough et al.,
2005; Grebmeier et al., 2006b; Renaud et al., 2008; Link et al., 2011, 2013a, 2013b]. Interestingly, in the

Figure 4. Pan-Arctic distribution of sediment oxygen demand (mmol O2m
�2 d�1). The black crosses indicate the station locations. Observations are extracted from

30 publications and 16 databases for a total of 1154 values. Data are displayed as gridded field (method: weighted-average gridding).
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Northern Greenland Sea and deep central Arctic the respiration patterns seem relatively constant throughout
the seasons (Figure 5). This lack of seasonal signal could be due to the greater depths in combination with a
low phytoplanktonic biomass (chl a concentrations: 1–2mgm�3 [Ardyna et al., 2013]), as well as the relatively
low sampling effort during winter (Figure S1). As a whole, the magnitude and timing of blooms have signifi-
cant implications for the benthic remineralization function.

3.3. SOD Predictions, Disparities With Measured Values, and Interpolation to the Entire Arctic

The four generalized additive models proposed in this paper to predict the SOD at a Pan-Arctic scale are
based on two explanatory variables, the water depth and/or food supply (chl a) (Table 2). The GAM analysis

Figure 5. Distribution of sediment oxygen demand (mmol O2m
�2 d�1) in the whole Arctic region according the different seasons: (a) winter (1 December to 28

February, n = 6), (b) spring (1 March to 31 May, n = 324), (c) summer (1 June to 31 August, n = 687), and (d) autumn (1 September to 30 November, n = 134). Data
are displayed as gridded field (method: weighted-average gridding).
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revealed that (1) the water depth was the most important explanatory variable (49%, against 47% for chl a) in
the SOD distribution and (2) the increment of chlorophyll a in GAM allowed a gain of up to 10% in the
explained variance of sediment oxygen uptakes. Based on R2, the “two variables—depth and chl a (with inter-
action)”model is the best fit for describing the entire SOD data set (Table 2), explaining a total of 59% of var-
iance. According to this model (see the last figure in Table 2), the effect of water depth is strongly reduced
when the supply of labile food (chl a) is high, highlighting the prominent effect of food availability on
SOD. The only drawback of this model is the overexpression of the “depth” variable, first through Pan-
Arctic chl a estimates beforehand SOD prediction and then directly in SOD estimations.

The differences between the predicted values obtained through the model and the observations, which are
represented in Figure 6, allow to identify strength and weaknesses of the model. Several seas or subregions
were constantly overestimated or underestimated in all models (Figures 6 and S2). For instance, parts of the
Bristol Bay (Bering Sea) and Southern Chukchi Sea exhibited very high SOD, but these were strongly under-
estimated throughout. The scarcity of these very high values clearly limits the capacity of the model to ade-
quately predict them. In contrast, SOD in the East Siberian and Eastern Beaufort Seas was overestimated
(>100%), which is probably due to the local relevance of other variables such as riverine OM input or macro-
fauna or zooplankton biomass. Interestingly, the deviation was particularly high for the Laptev and Greenland
Seas which may be due to the fact that SOD was determined via oxygen microsensors, thus representing the
dissolved oxygen uptake rather than total oxygen uptake. Thus, at first sight, we could suspect that the use of
DOU (rather than TOU) leads to an underestimation of the observed values and, consequently, an overesti-
mation in the predicted values. However, it is also very probable that the model overestimates the predicted
values for these areas without influence of the measurement technique used. On average, inflow shelves
exhibited lower relative anomalies than the other shelves or deep basin.

Implementation of the “two variables—depth and chl a (with interaction)” GAM model to the entire Arctic
region (at a resolution of 1°) allowed the creation of a full Pan-Arctic distribution of SOD (Figure 7) to

Figure 6. Relative anomalies of sediment oxygen demand between predicted and observed values ((SODpred� SODobs)
* 100/SODobs) for the “2 variables—depth and chl a (with interaction)” GAM model. Data are displayed as gridded field
(method: weighted-average gridding). Positive values mean an overestimation of the predicted values.
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corroborate previous observations and provide predictions for data poor areas (see Figures 1 and 4). The
model predicted SOD between 0.5 and 9.7mmolO2m

�2 d�1 (Figure 7 and Table S1 in the supporting infor-
mation). As noted previously, the central Arctic Basin as well as the offshore Greenland Sea exhibited low pre-
dicted SODs around 0.5 and up to 2mmol O2m

�2 d�1, and this pattern was also observed in the central
Baffin Bay. In addition, the Amerasian Arctic shelf displayed once again strong SODs from the model.
Again, the high patchiness in SOD (e.g., local hot spots) on this inflow shelf has not been captured well by
our model, and this can be attributed to the lack of variables related to the benthic communities. Indeed, dif-
ferent studies showed the importance of the macrobenthos on the SOD in the Chukchi Sea [Clough et al.,
2005; Grebmeier et al., 2015a, 2015b]. For instance, Grebmeier et al. [2015a, 2015b] attributed the high SOD
in the Southern Chukchi Sea to the high bivalve biomass, as they are known to be large oxygen consumers
in the sediments. The interpolation of SOD to the entire Arctic also highlighted high oxygen uptakes (up to
9.7mmol O2m

�2 d�1) in the interior shelves along the coast of the East Siberian, Laptev, and Kara Seas,
regions where data are scarce. These values are in agreement with a previous estimate of benthic carbon
demand, based on an allometric relation between body size of benthos and respiration, for the coastal part
of the Laptev Sea (3.3–10.4mmolO2m

�2 d�1 after conversion [Schmid et al., 2006]). The few in situ PP data
available for the Russian seas indicate relatively low pelagic PP (around 25 and 50 g Cm�2 yr�1) in these seas
that are characterized by a stratified, nutrient-poor layer of Arctic water [Sakshaug, 2004; Harada, 2016], and
ice-algae PP may not be sufficient in order to support the high oxygen demand predicted by the model. But
the low number of PP measurements combined with potentially high patchiness, and an unknown riverine

Figure 7. Interpolation of SOD (mmol O2m
�2 d�1) in the whole Arctic region using the “2 variables—depth and chl a

(with interaction)” GAM model. Data are displayed as gridded field (method: weighted-average gridding). The locations of
the main Arctic rivers are indicated on the figure. The dashed black polygons represent areas where no empirical data have
been collected.
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influence, means that a high degree of uncertainty remains for these areas. The interior Arctic shelves receive
freshwater inputs from four major world rivers, namely, the Yenisey, Lena, Ob, and Mackenzie (water dis-
charge> 310 109m3 yr�1 [McKee et al., 2004]). Benthic regions of ocean margins impacted by major rivers
are known to be very active zones of biogeochemical transformations [Aller, 1998]. Although riverine nutrient
contributions to the Arctic Ocean PP are small in comparison to the Bering Strait inflow [Le Fouest et al., 2013],
local effects (e.g., near river mouths [Tank et al., 2012]) can still be significant. For instance, Gaye et al. [2007]
showed very high fluxes of fresh OM at the river mouths in the Kara Sea when river discharge is reduced. The
combinedmarine and terrestrial OM input promotes high SOD in the vicinity of the river, as it was observed in
the Mackenzie Delta [Link et al., 2013b]. On the contrary, in the Barents Sea, despite being considered as a
very productive area [Chen et al., 2003; Arrigo et al., 2008; Pabi et al., 2008], the predicted SOD values were
on average around or <5mmolO2m

�2 d�1, which is probably due to the greater depths of this sea.
However, exceptions of elevated SODs (~9mmolO2m

�2 d�1) were predicted along the Svalbard archipelago
coast. Likewise, relatively moderate SOD (<5mmolO2m

�2 d�1 in average) was generated for the Eastern
Canadian High Arctic (Canadian Archipelago and NOW) despite the fact that NOW is considered a productive
area (150–200 g Cm�2 yr�1 [Klein et al., 2002; Arrigo et al., 2008; Ardyna et al., 2011]) see section 3.2 for expla-
nation). Finally, high SODs (4–9mmolO2m

�2 d�1) were predicted in the south of the Hudson Bay and in the
Foxe Basin (Eastern Canadian Arctic), and again, these values must be interpreted with some caution since no
empirical data were available for ground-truthing.

3.4. Spatial Patterns in Nutrient Fluxes and Environmental Drivers

Nutrient fluxes are an integral part of the benthic remineralization function and are very important for under-
standing biogeochemical cycles and early diagenesis but unfortunately have been poorly studied in the
Arctic. A dynamic diagenesis model for Arctic sediments showed that the processes of denitrification, iron,
and sulfate reductions combined could account for up to 60% of the OM remineralization (<10% for the deni-
trification, 25% for iron reduction, and 35% for sulfate reduction [Berg et al., 2003]), confirming the previous
estimation of Rysgaard et al. [1998]. In Arctic sediments, themain nutrient fluxes measured are nitrate, ammo-
nium, phosphate, and silicate, and their values ranged from �0.59 to 0.88, �1.07 to 1.52, �0.05 to 0.37, and
�0.03 to 6.2mmolm�2 d�1, respectively. A recent study completed in the Pacific Arctic region showed that
ammonium and silicate fluxes can reach up to 7 and 2.5mmolm�2 d�1, respectively, at local hot spots
[Mathis et al., 2014]. Nitrate and ammonium fluxes were highly heterogeneous (release and uptake) in sedi-
ments at water depth <200m (0.09 ± 0.24 and 0.18 ± 0.39mmolm�2 d�1, respectively) and closest to 0 at
deepest stations (0.02 ± 0.14 and �0.01 ± 0.03mmolm�2 d�1, respectively). Phosphate fluxes were higher
in sediments at water depth <50m (0.08 ± 0.10mmolm�2 d�1) than >50m (0.01 ± 0.02mmolm�2 d�1).
Silicate release by sediments was relatively high (mean: 0.6 ± 1.3mmolm�2 d�1) compared to other fluxes
but did not exhibit a clear trend with water depth.

Overall, nutrient flux data exist for the Canadian Arctic, the Amerasian shelf, and isolated stations in the
Greenland and Barents Seas (Figure 8). The Pan-Arctic distribution of denitrification processes exhibited rela-
tively homogeneous values in the nitrate fluxes with the exception of those measured in the Barents Sea and
in the vicinity of the Mackenzie River (Beaufort Sea), where a higher release and uptake by sediments were
observed, respectively. Nitrate uptake is usually detected in sediments of continental shelves influenced by
large river inputs and/or in sediments receiving high OM loads [Link et al., 2013b, and references therein].
Conversely, the high nitrate concentration (high release) in sediments of the Barents Sea (south of the
Svalbard Archipelago) could be related to the degradation of high amounts of labile OM as proposed by
Rysgaard et al. [1998] and Link et al. [2013b]. In this geographic area, high chl a concentrations (i.e., labile
OM) were generally encountered in sediments [Morata and Renaud, 2008] due to high PP and subsequent
chl a biomass in the water column [Engelsen et al., 2002; Chen et al., 2003; Hodal and Kristiansen, 2008;
Ardyna et al., 2013] and to tight benthic-pelagic coupling [Morata and Renaud, 2008; Reigstad et al., 2008;
Tamelander et al., 2008]. Like nitrate, phosphate was taken up by sediments not only in the vicinity of the
Mackenzie River but also in the NOW, whereas the release to the pore water prevailed in other areas, as it
is typically observed, since phosphate cannot be used as an electron acceptor during the diagenesis
[Hensen et al., 2006]. Hence, the phosphate uptake could be explained by biological consumption for the
formation of new biomass, the adsorption onto particle surface, authigenic formation of phosphorites, or
bacterial phosphate accumulation [Hensen et al., 2006]. Link et al. [2013b] suggest that phosphate uptake
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near the Mackenzie River mouth may be linked to a low oxygenation, to high OM input, and to the accumula-
tion of compounds with high capacity to adsorb phosphate. Anoxic mineralization processes, which result in
part in the release of ammonium, require high input of OM in surface sediments [Hensen et al., 2006]. The
ammonium flux map showed a high release of ammonium from sediments in the Chukchi and Bering
Seas, as previously observed by Mathis et al. [2014]. In this inflow shelf, ammonium effluxes indicate high
ammonium regeneration within sediments, probably originating from organic carbon contents and meta-
bolic activities of benthic communities [Grebmeier and Cooper, 1995]. Indeed, these high ammonium releases
occur in regions of high carbon export, which is reflected in high SOD [Mathis et al., 2014]. Moreover,

Figure 8. Distribution of nutrient fluxes (mmolm�2 d�1) in the Arctic region: (a) nitrate (n = 72), (b) ammonium (n = 73), (c) phosphate (n = 49), and (d) silicate
(n = 61). Positive flux means a release of the nutrient from sediment into the water column, while negative value indicates benthic uptake.
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ammonium fluxes were quite constant in the Canadian Arctic. In summary, on the very productive inflow
shelves, benthic activity replenishes bottom waters with either nitrate, ammonium, or phosphate, whereas
nitrate, phosphate, and ammonium are consumed by sediments in the interior shelves which are under
the direct influence of Mackenzie River inputs (Beaufort Sea). Silicate fluxes were relatively high in the shallow
waters of the Barrow Canyon, in the Canadian Archipelago (Lancaster Sound), and NOW Polynya (Baffin Bay).
These silicate fluxes depend on the supply of biogenic opal (i.e., diatom frustules) and the specific dissolution
rates [Zabel and Hensen, 2006]. The high biological remineralization at the seafloor could be related to the
important contribution of diatoms in the PP in these areas [Michel et al., 2002; Tremblay et al., 2002; Hill
et al., 2005; Ardyna et al., 2011]. As diatom frustules are often indigestible for herbivorous planktons [Juul-
Pedersen et al., 2008], a significant vertical export of biogenic silicate to the seabed is expected.
Nonetheless, bacterial activity can strongly accelerate biogenic silica dissolution in the water column [Bidle
and Azam, 1999].

Environmental and biological variables are important drivers of nutrient fluxes. Indeed, in the Canadian
Arctic, nutrient fluxes are strongly related to short-term (chl a or pigment concentrations in sediment and ver-
tical flux of POC) and, to a lesser extent, long-term environmental parameters (e.g., porosity, manganese, and
iron) [Link et al., 2013b]. In their dynamic model of early diagenesis and nutrient cycling, Berg et al. [2003]
included variables not only adsorption processes and OM degradation pathways but also molecular diffusion,
burial, bioturbation, and irrigation. Indeed, biotic factors, like bioirrigation, appear to have an important role
in the nutrient fluxes at the sediment-water interface [Clough et al., 1997; Michaud et al., 2006; Na et al., 2008;
Davenport et al., 2012; Stief, 2013; Mathis et al., 2014], as is the case for SOD (see section 3.1.3). For instance,
bioturbation activities enhance the release of ammonium and phosphate [Michaud et al., 2006; Na et al.,
2008], especially the presence of gallery diffusers. In addition, different patterns could be observed among
locations [Link et al., 2013a] according to the life-history traits of species constituting the benthic community
[Michaud et al., 2006; Na et al., 2008]. Biodiffusers living near the sediment surface tend to promote nitrate
release, whereas biodiffusers living in the subsurface sediment cause nitrate uptake [Michaud et al., 2006].

3.5. Predictions of Future Sediment Oxygen Demands

Based on the current knowledge on climate change-mediated changes in PP (see section 1), an increase in
benthic activity (e.g., SOD) can be expected in areas where a switch from multiyear ice cover to seasonal
ice cover results in an increased OM flux to the seafloor. On the other hand, areas that are going to become
permanently ice free could experience a decline in benthic oxygen fluxes due to disappearance of sea ice
algae and enhanced thermohaline stratification. In addition, regional factors such as freshwater discharge,
riverine supply of refractory and labile OM, inflow of Pacific and Atlantic waters, and atmospheric inputs
[Findlay et al., 2015] as well as physical mechanisms (i.e., eddies [Harada, 2016]) can impact the sediment
OM cycling.

In the Bering and Chukchi Seas, a strengthened Pacific inflow can supply additional nutrients which may
augment PP [Findlay et al., 2015, and reference therein]. However, the phytoplanktonic community has been
shown to be sensitive to oceanic warming which can precipitate a change in size distribution [Fujiwara et al.,
2011]. A switch to smaller-sized phytoplankton with a hydrodynamic resistance to sinking [Li et al., 2009]
could in the future reduce the current high export of OM to the benthos [Findlay et al., 2015]. Moreover,
the rise in seawater temperature could change the zooplankton community (e.g., higher abundance, larger
organisms, and increase of biological activities) and result in a longer pelagic food web which could weaken
the current tight benthic-pelagic coupling. The other inflow shelf, the Barents Sea, is characterized by the pre-
sence of a large open water area throughout the year and is thought to be one of the areas in the Arctic most
affected by the change in the extent and duration of sea ice cover [Arrigo and van Dijken, 2011]. Indeed,
between 1998 and 2009, the total net PP in the Barents Sea significantly increased [Arrigo and van Dijken,
2011]. However, Wassmann and Reigstad [2011] predict a diminution of the PP in the Southern Barents
Sea. Thus, a large part of the Atlantic-influenced shelves could likely be subject to a reduction in vertical
export to the benthos in the future which could modify the dynamics of benthic oxygen uptake. In contrast,
the decline in sea ice cover could result in increased PP and vertical export in the multiyear sea ice area of the
Northern Barents Sea [Wassmann and Reigstad, 2011], which might stimulate SOD.

According to recent observations, the interior shelves have experienced a significant increase in PP, with the
greatest increases found in Eurasian Arctic (i.e., Kara and East Siberian Seas) [Arrigo and van Dijken, 2011;
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Bergeron and Tremblay, 2014], which coincided with a significant lengthening of the open water season
[Arrigo and van Dijken, 2011]. Moreover, in the seas bordering the Russian coast, second blooms in the fall
have become more widespread (+50% over the last decade) as the increased wind stress at the sea surface
(when ice-free) enhances vertical mixing and nutrients are replenished from the deep waters [Ardyna et al.,
2014]. Increasing food supply to the benthos could therefore significantly enhance benthic oxygen fluxes,
particularly in relatively shallow shelves. However, riverine inputs in the vicinity river mouths could also limit
PP through increased upper ocean stratification and turbidity, despite the discharge of large amounts of
nutrients [Findlay et al., 2015]. For instance, even though the Mackenzie River runoff remained relatively
unchanged for the last four decades [Déry andWood, 2005;McClelland et al., 2006; Yang et al., 2015], the thaw-
ing permafrost [Price et al., 2013] resulted in a 50% increase in the mass terrestrial particles delivered to the
Beaufort Sea in the last 10 years [Doxaran et al., 2015].

On the outflow shelves, the impact of climate change on benthic ecosystem functioning is likely to vary
regionally. Similar to the Barents Sea, the Greenland Sea is characterized by the presence of a large area of
open water throughout the year, but the total net PP has significantly decreased here between 1998 and
2009 [Arrigo and van Dijken, 2011]. In some ecologically significant regions, such as the well-mixed and highly
productive North Water Polynya, a decline in PP has also been observed [Bélanger et al., 2013], suggesting
that this area is becoming more oligotrophic [Bergeron and Tremblay, 2014]. The consequence would be a
strong decrease in SODs in both areas. Conversely, we can expect an increase in the benthic activity in
Northern Canadian Archipelago due to the reduced ice cover and likely increase of OM fluxes to the benthos.

Finally, the effect of climate change (e.g., reduction in sea ice cover andmajor changes in sea ice regime) on the
dynamics of benthic oxygen uptake could initially be positive in the central Arctic basins due to the increase of
algae standing stocks and vertical export to the seafloor. During the 2012 summer sea ice minimum extent,
Boetius et al. [2013] observed the extensive deposition of fresh ice algae on the deep seafloor in the eastern-
central Arctic Basin (Amundsen Basin). Indeed, such a pulse of fresh OM can lead to an immediate doubling
of SOD [Witte et al., 2003]. Additionally, in the Canadian Basin (offshore Beaufort Sea), increased fresher of
the upper ocean prompted a shift toward smaller plankton (i.e., picophytoplankton and bacterioplankton) in
the summer [Li et al., 2009]. This change in the species’ size will presumably lead to a reduction of vertical
OMfluxes, and thus affect the benthic community respiration and sedimentaryOMcycling.Moreover, the high
stratification in the Canadian Basin [Morison et al., 2012] should further restrain sea ice algae blooms.

4. Summary and Perspectives

The benthic oxygen fluxes in the Arctic, compiled here for the first time, exhibit strong variation, with SOD
maxima in the Southern Chukchi Sea, Northern Bering Sea, and at the head of Barrow Canyon and minima
in the deepest part of the Arctic region. Clear differences among the Arctic shelves were discerned, with high-
est and lowest mean SODs found in the inflow and outflow shelves, respectively, which suggests that the
shelves’ environmental characteristics have a strong influence on the benthic ecosystem functioning.
Moreover, the degree of seasonality in SOD was sea- and subregion-specific. Benthic OM remineralization
pattern revealed positive and negative cross-boundary fluxes; nutrient (nitrate, ammonium, and phosphate)
fluxes were positive in the inflow shelves, i.e., the very productive waters in the Amerasian shelf or over
Svalbard continental shelf (Barents Sea), and negative in the interior shelves, i.e., the river-dominated ocean
margin (e.g., Mackenzie shelf and Beaufort Sea).

In agreement with previous studies [Boetius and Damm, 1998; Grant et al., 2002; Clough et al., 2005; Grebmeier
et al., 2006b; Renaud et al., 2008; Link et al., 2011, 2013a, 2013b], our GAM analyses showed that benthic oxy-
gen demand strongly depends on water depth as well as the availability of labile OM which together
explained up to 59% of the SOD variance. Overall, the proposed model provided good estimates for the large
majority of SOD values and in particular captured well areas of high benthic activity in the Pacific inflow shelf
and of low activity in the deep Arctic basins. Local hot spots of benthic carbon remineralization, often driven
by factors such as zooplankton standing stocks or benthic community structure and activity, have not always
been captured by the model.

In addition, this compilation of benthic remineralization data highlights the significant lack of measurements
(or available data) of benthic oxygen fluxes in the Russian seas as well as nearshore and in the vicinity of the
main Arctic rivers, as well as of nutrient fluxes across the Arctic Ocean. The lack of spatial coverage in these
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particular regions limits the model, and the predicted values of SOD obtained for these data-poor regions
must be interpreted with some caution. There is thus an urgent need for investigations in these areas in order
(1) to provide a benchmark, (2) to confirm and sharpen the models, and (3) to determine the influence of the
terrestrial inputs on the benthic ecosystem functioning in coastal and deltaic waters. Moreover, future
research should also focus on studying the organic matter remineralization during the polar night in order
to better evaluate the seasonality in SOD and nutrient fluxes. Another important goal of future research
would be to improve our understanding of the relative importance of global change on benthic
remineralization function.
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