225 research outputs found

    The Addition and Cessation of Inorganic Fertiliser Amendments in Long-Term Managed Grasslands: Impacts on Above and Below-Ground Communities

    Get PDF
    In recent times, land use in the United Kingdom has undergone considerable changes because of social and economic pressures, leading to a fine balance between the demands of highly productive intensive systems and practices which are perceived to be more environmentally acceptable. Plant productivity is governed by the supply of nutrients from the soil, which in turn is dependent on the dynamics of organic matter decomposition driven by soil micro-, meso- and macro fauna. Considerable information is available concerning the impact of inorganic fertiliser additions on communities of macro-fauna and flora, but the effects on specific microbial communities in soils are less clear. The effects of withholding inorganic nitrogen (N) are much less studied. The present study investigated the impact on plant and soil communities of either adding or withholding N from long-term managed plots

    Sharp interface limits of phase-field models

    Full text link
    The use of continuum phase-field models to describe the motion of well-defined interfaces is discussed for a class of phenomena, that includes order/disorder transitions, spinodal decomposition and Ostwald ripening, dendritic growth, and the solidification of eutectic alloys. The projection operator method is used to extract the ``sharp interface limit'' from phase field models which have interfaces that are diffuse on a length scale ξ\xi. In particular,phase-field equations are mapped onto sharp interface equations in the limits ξκ≪1\xi \kappa \ll 1 and ξv/D≪1\xi v/D \ll 1, where κ\kappa and vv are respectively the interface curvature and velocity and DD is the diffusion constant in the bulk. The calculations provide one general set of sharp interface equations that incorporate the Gibbs-Thomson condition, the Allen-Cahn equation and the Kardar-Parisi-Zhang equation.Comment: 17 pages, 9 figure

    The Moment Guided Monte Carlo method for the Boltzmann equation

    Full text link
    In this work we propose a generalization of the Moment Guided Monte Carlo method developed in [11]. This approach permits to reduce the variance of the particle methods through a matching with a set of suitable macroscopic moment equations. In order to guarantee that the moment equations provide the correct solutions, they are coupled to the kinetic equation through a non equilibrium term. Here, at the contrary to the previous work in which we considered the simplified BGK operator, we deal with the full Boltzmann operator. Moreover, we introduce an hybrid setting which permits to entirely remove the resolution of the kinetic equation in the limit of infinite number of collisions and to consider only the solution of the compressible Euler equation. This modification additionally reduce the statistical error with respect to our previous work and permits to perform simulations of non equilibrium gases using only a few number of particles. We show at the end of the paper several numerical tests which prove the efficiency and the low level of numerical noise of the method.Comment: arXiv admin note: text overlap with arXiv:0908.026

    A partitioned model order reduction approach to rationalise computational expenses in multiscale fracture mechanics

    Get PDF
    We propose in this paper an adaptive reduced order modelling technique based on domain partitioning for parametric problems of fracture. We show that coupling domain decomposition and projection-based model order reduction permits to focus the numerical effort where it is most needed: around the zones where damage propagates. No \textit{a priori} knowledge of the damage pattern is required, the extraction of the corresponding spatial regions being based solely on algebra. The efficiency of the proposed approach is demonstrated numerically with an example relevant to engineering fracture.Comment: Submitted for publication in CMAM

    The combination of a blood test and Fibroscan improves the non-invasive diagnosis of liver fibrosis

    Get PDF
    Background and aims: Blood tests and liver stiffness evaluation (LSE) by ultrasonographic elastometry are accurate tools for diagnosing liver fibrosis. We evaluated whether their synchronous combination in new scores could improve the diagnostic accuracy and reduce liver biopsy requirement in algorithm. Methods: Three hundred and ninety patients with chronic liver disease of miscellaneous causes were included. Five blood fibrosis tests were evaluated: APRI, FIB-4, Hepascore, Fibrotest and FibroMeter. The reference was fibrosis Metavir staging. Results: Diagnosis of significant fibrosis (Metavir F≥2). The most accurate synchronous combination was FibroMeter+LSE, which provided a significantly higher area under the receiver operating characteristic curve (0.892) than LSE alone (0.867, P=0.011) or Fibrometer (0.834, P<10−3). An algorithm using the FibroMeter+LSE combination and then a liver biopsy in indeterminate cases had 91.9% diagnostic accuracy and required significantly fewer biopsies (20.2%) than previously published Bordeaux algorithm (28.6%, P=0.02) or sequential algorithm for fibrosis evaluation (SAFE) (55.7%, P<10−3). The Angers algorithm performance was not significantly different between viral hepatitis and other causes. Diagnosis of cirrhosis. The most accurate synchronous combination was LSE+FibroMeter, which provided ≥90% predictive values for cirrhosis in 90.6% of patients vs 87.4% for LSE (P=0.02) and 57.9% for FibroMeter (P<10−3). An algorithm including the LSE+FibroMeter combination, and then a liver biopsy in indeterminate cases, had a significantly higher diagnostic accuracy than the SAFE algorithm (91.0 vs 79.8%, P<10−3), and required significantly fewer biopsies than the Bordeaux algorithm (9.3 vs 25.3%, P<10−3). Conclusion: The synchronous combination of a blood test plus LSE improves the accuracy of the non-invasive diagnosis of liver fibrosis and, consequently, markedly decreases the biopsy requirement in the diagnostic algorithm, notably to <10% in cirrhosis diagnosis

    Comparing the effects of calibration and climate errors on a statistical crop model and a process-based crop model

    Get PDF
    Understanding the relationship between climate and crop productivity is a key component of projections of future food production, and hence assessments of food security. Climate models and crop yield datasets have errors, but the effects of these errors on regional scale crop models is not well categorized and understood. In this study we compare the effect of synthetic errors in temperature and precipitation observations on the hindcast skill of a process-based crop model and a statistical crop model. We find that errors in temperature data have a significantly stronger influence on both models than errors in precipitation. We also identify key differences in the responses of these models to different types of input data error. Statistical and process-based model responses differ depending on whether synthetic errors are overestimates or underestimates. We also investigate the impact of crop yield calibration data on model skill for both models, using datasets of yield at three different spatial scales. Whilst important for both models, the statistical model is more strongly influenced by crop yield scale than the process-based crop model. However, our results question the value of high resolution yield data for improving the skill of crop models; we find a focus on accuracy to be more likely to be valuable. For both crop models, and for all three spatial scales of yield calibration data, we found that model skill is greatest where growing area is above 10-15 %. Thus information on area harvested would appear to be a priority for data collection efforts. These results are important for three reasons. First, understanding how different crop models rely on different characteristics of temperature, precipitation and crop yield data allows us to match the model type to the available data. Second, we can prioritize where improvements in climate and crop yield data should be directed. Third, as better climate and crop yield data becomes available, we can predict how crop model skill should improve

    Familial Glucocorticoid Receptor Haploinsufficiency by Non-Sense Mediated mRNA Decay, Adrenal Hyperplasia and Apparent Mineralocorticoid Excess

    Get PDF
    Primary glucocorticoid resistance (OMIM 138040) is a rare hereditary disease that causes a generalized partial insensitivity to glucocorticoid action, due to genetic alterations of the glucocorticoid receptor (GR). Investigation of adrenal incidentalomas led to the discovery of a family (eight affected individuals spanning three generations), prone to cortisol resistance, bilateral adrenal hyperplasia, arterial hypertension and hypokalemia. This phenotype exacerbated over time, cosegregates with the first heterozygous nonsense mutation p.R469[R,X] reported to date for the GR, replacing an arginine (CGA) by a stop (TGA) at amino-acid 469 in the second zinc finger of the DNA-binding domain of the receptor. In vitro, this mutation leads to a truncated 50-kDa GR lacking hormone and DNA binding capacity, devoid of hormone-dependent nuclear translocation and transactivation properties. In the proband's fibroblasts, we provided evidence for the lack of expression of the defective allele in vivo. The absence of detectable mutated GR mRNA was accompanied by a 50% reduction in wild type GR transcript and protein. This reduced GR expression leads to a significantly below-normal induction of glucocorticoid-induced target genes, FKBP5 in fibroblasts. We demonstrated that the molecular mechanisms of glucocorticoid signaling dysfunction involved GR haploinsufficiency due to the selective degradation of the mutated GR transcript through a nonsense-mediated mRNA Decay that was experimentally validated on emetine-treated propositus' fibroblasts. GR haploinsufficiency leads to hypertension due to illicit occupation of renal mineralocorticoid receptor by elevated cortisol rather than to increased mineralocorticoid production reported in primary glucocorticoid resistance. Indeed, apparent mineralocorticoid excess was demonstrated by a decrease in urinary tetrahydrocortisone-tetrahydrocortisol ratio in affected patients, revealing reduced glucocorticoid degradation by renal activity of the 11β-hydroxysteroid dehydrogenase type 2, a GR regulated gene. We propose thus that GR haploinsufficiency compromises glucocorticoid sensitivity and may represent a novel genetic cause of subclinical hypercortisolism, incidentally revealed bilateral adrenal hyperplasia and mineralocorticoid-independent hypertension

    Unveiling Novel RecO Distant Orthologues Involved in Homologous Recombination

    Get PDF
    The generation of a RecA filament on single-stranded DNA is a critical step in homologous recombination. Two main pathways leading to the formation of the nucleofilament have been identified in bacteria, based on the protein complexes mediating RecA loading: RecBCD (AddAB) and RecFOR. Many bacterial species seem to lack some of the components involved in these complexes. The current annotation of the Helicobacter pylori genome suggests that this highly diverse bacterial pathogen has a reduced set of recombination mediator proteins. While it is now clear that homologous recombination plays a critical role in generating H. pylori diversity by allowing genomic DNA rearrangements and integration through transformation of exogenous DNA into the chromosome, no complete mediator complex is deduced from the sequence of its genome. Here we show by bioinformatics analysis the presence of a RecO remote orthologue that allowed the identification of a new set of RecO proteins present in all bacterial species where a RecR but not RecO was previously identified. HpRecO shares less than 15% identity with previously characterized homologues. Genetic dissection of recombination pathways shows that this novel RecO and the remote RecB homologue present in H. pylori are functional in repair and in RecA-dependent intrachromosomal recombination, defining two initiation pathways with little overlap. We found, however, that neither RecOR nor RecB contributes to transformation, suggesting the presence of a third, specialized, RecA-dependent pathway responsible for the integration of transforming DNA into the chromosome of this naturally competent bacteria. These results provide insight into the mechanisms that this successful pathogen uses to generate genetic diversity and adapt to changing environments and new hosts

    Normosmic Congenital Hypogonadotropic Hypogonadism Due to TAC3/TACR3 Mutations: Characterization of Neuroendocrine Phenotypes and Novel Mutations

    Get PDF
    CONTEXT: TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH) (OMIM #146110). In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway. OBJECTIVE: To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations. RESULTS: From a cohort of 352 CHH, we selected 173 nCHH patients and identified nine patients carrying TAC3 or TACR3 variants (5.2%). We describe here 7 of these TACR3 variants (1 frameshift and 2 nonsense deleterious mutations and 4 missense variants) found in 5 subjects. Modeling and functional studies of the latter demonstrated the deleterious consequence of one missense mutation (Tyr267Asn) probably caused by the misfolding of the mutated NK3R protein. We found a statistically significant (p<0.0001) higher mean FSH/LH ratio in 11 nCHH patients with TAC3/TACR3 biallelic mutations than in 47 nCHH patients with either biallelic mutations in KISS1R, GNRHR, or with no identified mutations and than in 50 Kallmann patients with mutations in KAL1, FGFR1 or PROK2/PROKR2. Three patients with TAC3/TACR3 biallelic mutations had an apulsatile LH profile but low-frequency alpha-subunit pulses. Pulsatile GnRH administration increased alpha-subunit pulsatile frequency and reduced the FSH/LH ratio. CONCLUSION: The gonadotropin axis dysfunction associated with nCHH due to TAC3/TACR3 mutations is related to a low GnRH pulsatile frequency leading to a low frequency of alpha-subunit pulses and to an elevated FSH/LH ratio. This ratio might be useful for pre-screening nCHH patients for TAC3/TACR3 mutations

    Joint state and parameter estimation for distributed mechanical systems

    Get PDF
    We present a novel strategy to perform estimation for a dynamical mechanical system in standard operating conditions, namely, without ad hoc experimental testing. We adopt a sequential approach, and the joint state-parameter estimation procedure is based on a state estimator inspired from collocated feedback control. This type of state estimator is chosen due to its particular effectiveness and robustness, but the methodology proposed to adequately extend state estimation to joint state-parameter estimation is general, and - indeed -applicable with any other choice of state feedback observer. The convergence of the resulting joint estimator is mathematically established. In addition, we demonstrate its effectiveness with a biomechanical test problem defined to feature the same essential characteristics as a heart model, in which we identify localized contractility and stiffness parameters using measurements of a type that is available in medical imaging
    • …
    corecore