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Abstract Understanding the relationship between climate and crop productivity is a key
component of projections of future food production, and hence assessments of food secu-
rity. Climate models and crop yield datasets have errors, but the effects of these errors on
regional scale crop models is not well categorized and understood. In this study we compare
the effect of synthetic errors in temperature and precipitation observations on the hindcast
skill of a process-based crop model and a statistical crop model. We find that errors in
temperature data have a significantly stronger influence on both models than errors in pre-
cipitation. We also identify key differences in the responses of these models to different
types of input data error. Statistical and process-based model responses differ depending
on whether synthetic errors are overestimates or underestimates. We also investigate the
impact of crop yield calibration data on model skill for both models, using datasets of yield
at three different spatial scales. Whilst important for both models, the statistical model is
more strongly influenced by crop yield scale than the process-based crop model. However,
our results question the value of high resolution yield data for improving the skill of crop
models; we find a focus on accuracy to be more likely to be valuable. For both crop models,
and for all three spatial scales of yield calibration data, we found that model skill is greatest
where growing area is above 10-15 %. Thus information on area harvested would appear to
be a priority for data collection efforts. These results are important for three reasons. First,
understanding how different crop models rely on different characteristics of temperature,
precipitation and crop yield data allows us to match the model type to the available data.
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Second, we can prioritize where improvements in climate and crop yield data should be
directed. Third, as better climate and crop yield data becomes available, we can predict how
crop model skill should improve.

1 Introduction

While knowledge of crop physiology comes from experiments at the field scale, climate
models have skill at the regional scale. Regional scale crop models have been developed as
principled frameworks for upscaling field scale knowledge to the regional scale, in order to
help capture and explore the key crop-climate processes. While regional scale crop mod-
els can differ significantly in their structure and assumptions, they all rely on the quality
of available climate and crop yield data. ‘Quality’ of this data is not necessarily a matter
of higher temporal/spatial resolution. Rather it depends on whether the model-significant
statistics of the input data accurately reflect reality.

The projected response of crops to climate variability and change can vary significantly
according to the methodology chosen (Challinor et al. 2014). This variation can be ascribed
to three causes: structural differences between crop models, differences in crop calibration
data, and differences in weather inputs. Structural differences in models result from the
choice of parameterisations for representing crop growth and development (White et al.
2011). These choices are often related to the spatial scale for which the model is designed
(Challinor and Wheeler 2008). Choices regarding model calibration are also related to the
spatial scale of the assessment: regional-scale models typically have less crop growth and
development data for calibration. Calibration and application of models at regional-scales
invariably involves simplifying spatial heterogeneity, and can therefore result in aggregation
error (Hansen and Jones 2000).

Disentangling these three sources of uncertainty is not trivial. Efforts to separate struc-
tural model uncertainty from calibration uncertainty have begun, and show promise (Asseng
et al. 2013). Frameworks for measuring and interpreting climate model uncertainty have,
at least for the case of climate change, a somewhat longer history (Ramirez-Villegas et al.
2013). Recent work includes assessments of the uncertainty associated with bias correction
of climate model output (Hawkins et al. 2013b; Koehler et al. 2013). In order to identify the
precise sources of climate-induced uncertainty in crop yield, recent studies have also sys-
tematically perturbed weather inputs (Berg et al. 2010; Lobell 2013; Watson and Challinor
2013).

There are significant structural differences between process-based and statistical model
crop models. The latter can do an excellent job of reproducing historical temperature-
induced yield variation at regional scales (Hawkins et al. 2013a), whilst the former are
useful for determining the causes of yield variation (Lobell et al. 2013), and may be more
robust to non-stationarity in the relationships between weather and crop yield. Comparisons
between process-based and statistical models are at an early stage. Estes et al. (2013) found
that a statistical model produces larger climate losses than a process-based model for maize
and wheat in South Africa, leading them to recommend increased intercomparison of these
two types of model.

This study draws on the research described above in order to examine interactions
between structural model uncertainty, input weather uncertainty, and input calibration
uncertainty. We apply systematic perturbations to observed weather and record the impact
on the skill of two regional-scale models: one process-based and one statistical. In order
to assess calibration uncertainty, three calibration configurations are used. Each configu-
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ration uses yield at one of three spatial scales, plus crop harvested area. Thus we define
“calibration” as any use of any crop observational data to improve crop model results.

By analyzing the effects of calibration uncertainty and systematic weather errors using
two structurally distinct crop models, this study quantifies how different model types can
be influenced by different input data uncertainties. This information is important for deter-
mining whether model and input data are fit for purpose in a given study, and informs the
allocation of resources for future improvements. In addition, analyses such as this study
provide information on how crop model skill may improve as weather and calibration data
improve.

2 Materials and methods

Statistical crop models are typically designed for a particular study. Thus, to perform a direct
comparison between a statistical crop model and a process-based crop model, this analysis
replicated the maize crop hindcast scenario of Hawkins et al. (2013a). A process-based crop
model was ported to the same scenario. Both these models are described below.

2.1 Statistical crop model

The statistical crop model developed by Hawkins et al. (2013a) for maize in France was used
as a case study for this analysis. This empirical model relates temperature, precipitation, and
maize yield and is trained using historical data. This statistical model is defined as follows:

Y (t) = g(t) + β1X(t) + β2(P (t) − P̄ ) + β3X(t)P (t) + e(t) (1)

where for a given year t: Y is maize yield, X is the number of days above a tempera-
ture threshold (32 ◦C) for the June-August growing season, P is mean precipitation for
June-August, g is the expected yield given average precipitation and no hot days, and e
is a stochastic error term. The β parameters and g are trained using a penalized likeli-
hood function, with g being a cubic regression spline. For further details of this model, see
Hawkins et al. (2013a). Since some studies assume a linear technology trend (e.g., Lobell
and Asner 2003; de Wit and van Diepen 2007), we analyzed the model just described
(ST ATnonlinear ), as well as the case where a linear trend is used for g(t) (ST ATlinear ).

The historical daily temperature and precipitation data was obtained from the E-OBS
gridded observational dataset (Haylock et al. 2008). Whereas Hawkins et al. used E-OBS
version 5.0 on a 0.5◦ x 0.5◦ grid, we used version 7.0 on a 0.25◦ x 0.25◦ latitude/longitude
grid. This higher resolution grid provided 1,035 locations in the study region.

The seasonal yield data was taken from two sources, which together provided observa-
tions from three spatial scales (see Fig. 1). Country and regional scale data was obtained
for France from EUROSTAT,1 and departmental scale observations were from AGRESTE
- Statistique Agricole Annuelle, obtained via ARVALIS - Institut du végétal. A total of 22
regions and 96 departments were used in this study. Yield observations covering all three
of these spatial scales were only available from 1980–2007, so this study only investigated
that time period. To allow a direct comparison of input datasets with the GLAM crop model
(described below), the yield data was linearly detrended with the level set to that of the start
year.

1http://epp.eurostat.ec.europa.eu/

http://epp.eurostat.ec.europa.eu/
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Fig. 1 Mean and standard deviation of yield observations for each E-OBS grid cell. There are clear differ-
ences in the observations used at each location, depending on whether the source of the data was country
scale (top row), regional scale (middle row) or departmental scale (bottom row). While the country scale
mean is near the mid-point of the means reported across all datasets (5320.0 kg ha−1; left column), country
scale standard deviation is low (511.88 kg ha−1; right column). Locations without yield observations for the
entire study period (1980–2007) were ignored

The statistical crop model was run at each location on the E-OBS grid, so each of the
kg ha−1 yield observation datasets were regridded to the E-OBS data’s resolution. The
weighted mean of harvest area was calculated for each E-OBS grid cell according to the
dataset provided by Monfreda et al. (2008).

2.2 Process-based crop model

We used the General Large Area Model for annual crops (GLAM; Challinor et al. 2004)
as a case study of a process-based regional-scale crop model. This model has been used
to simulate a range of crop types in both present-day and future climates (Koehler et al.
2013; Challinor et al. 2005). The maize version of the model was adapted from an African
model developed by Greatrex (2012). GLAM relies on values for precipitation, minimum
and maximum temperature, solar radiation, CO2 level, planting window and soil hydrologi-
cal properties to simulate crop development and yield. Calibration of the model is performed
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by adjusting the yield gap parameter (YGP) such that the difference between simulated and
observed mean yields is minimized. Maize accounts for approximately 56 % of the irri-
gated area of France (data retrieved from AQUASTAT provided by the FAO),2 but the ratio
of irrigated to non-irrigated maize area varies significantly across the country.3 Since we
wanted to compare the effects of systematic error in both temperature and precipitation, two
configurations of GLAM were analyzed – one with irrigation (GLAMirr ) and one that was
rainfed (GLAMrf d ).

GLAM was run on the same E-OBS grid as the statistical model. The daily temperature
and precipitation values for the study period 1980–2007 were taken from the E-OBS dataset
as described in Section 2.1. The yield and harvest area input data were identical to that used
for the statistical model. The CO2 concentration was set to 357.07 ppm, the value observed
at Mauna Loa for the mid-baseline of 1993 (Tans and Keeling data retrieved 2013). The
solar radiation data for the time period was taken from the ECMWF’s ERA-Interim reanal-
ysis,4 and was regridded to the E-OBS data resolution using the area weighted average. The
planting window was set according to the dataset produced by Sacks et al. (2010). The soil
hydrological values of saturated volume, lower limit volume, and drained upper limit were
taken from the WISE Soil Database for Crop Simulation Models version 1.1 (Romero et al.
2012).

The YGP value was calibrated using increments of 0.01. The remaining GLAM param-
eters were set to their default values with the exception of transpiration efficiency (TE) and
the maximum value of normalized TE (TEN MAX). These parameters can have a signif-
icant impact on simulated yield. The value of TE was set to 5.45 pa and TEN MAX was
set to 6.0. These values were taken from Tallec et al. (2013), and are more realistic for the
temperate region of this study than the default values. Unlike the statistical model, GLAM
simulates processes such as planting and emergence, so the start of simulation was set to
April (Birch et al. 2003). Initial tests of this experimental setup showed that GLAM was
consistent with the maize development periods for this region as described by Sacks et al.
(2010).

2.3 Simulating errors in climate data

In order to compare the effect of systematic climate data errors on these two types of
crop models, we deconstruct the temperature datasets described in Sections 2.1 and 2.2
into terms that represent different time scales, and then perturb these terms to alter the
mean and variance of the data at different temporal scales. As mentioned in Section 2.2,
the statistical model uses temperature and weather data for the June-August season, while
GLAM uses April-November. To ensure that both models were presented with identical
input perturbations, the transformations described below were applied for the full year
January-December.

Each time series was deconstructed as follows. Let z(y, m, d) be the observed value of
a given temperature value on day d in month m of year y. The complete 1980–2007 time
series was then deconstructed as:

z(y, m, d) = μ + αy + βm + γym + δymd (2)

2http://www.fao.org/nr/water/aquastat/irrigationmap/fr/index.stm
3EUROSTAT: http://www.eea.europa.eu/data-and-maps/figures/ds resolveuid/5B48E834-22A2–42D5-A247-
6E8B71CCCA36
4http://apps.ecmwf.int/datasets/data/interim full daily/

http://www.fao.org/nr/water/aquastat/irrigationmap/fr/index.stm
http://www.eea.europa.eu/data-and-maps/figures/ds_resolveuid/5B48E834-22A2-42D5-A247-6E8B71CCCA36
http://www.eea.europa.eu/data-and-maps/figures/ds_resolveuid/5B48E834-22A2-42D5-A247-6E8B71CCCA36
http://apps.ecmwf.int/datasets/data/interim_full_daily/
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where

μ = z(·, ·, ·),
αy = z(y, ·, ·) − μ,

βm = z(·,m, ·) − μ,

γym = z(y, m, ·) − (μ + αy + βm),

δymd = z(y, m, d) − (μ + αy + βm + γym).

In this notation the symbol · indicates a mean over the missing index, so for example:

z(y, m, ·) = 1

30

30∑

d=1

z(y, m, d).

In the above deconstruction, μ is the overall mean, αy is the average deviation for year y,
βm is the deviation for month m averaged over all years (so β1. . .β12 represents the mean
seasonal cycle), γym is the year-dependent deviation from the mean seasonal cycle, and
δymd is the daily deviation from the monthly mean. Figure 2 illustrates the components of
this deconstruction for a sample of minimum daily temperatures.

By adjusting each of the terms in the deconstruction, we can perturb the mean and
variance components of the input time series to get a new time series z∗:

z∗(y,m, d; θ) = μθμ + αθαy + βθβm + γθγym + δθ δymd, (3)

Fig. 2 Observed daily minimum temperatures at E-OBS location 44.625 degrees latitude, 0.625 degrees
longitude, for the period 2004 – 2007 (top panel). The bottom panel shows the deconstruction components
calculated for this time series. The location and time period were chosen for illustrative purposes
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for some parameters θ = (μθ , αθ , βθ , γθ , δθ ), i.e., each of the parameters in θ are multi-
plicative adjustments to their respective terms in the deconstruction. The original time series
is recovered by setting θ = (1, 1, 1, 1, 1). Figure 3 shows examples of these adjustments
made to the time series of Fig. 2.

The precipitation data P was perturbed using a different scheme, so that (1) transformed
datasets could not contain negative values and (2) the pattern of days with no precipita-
tion was retained, i.e., just the intensities of days with precipitation are perturbed. In this
scheme the logarithm of the monthly means was used, and daily fluctuations are dealt with
separately. That is, we let z(y, m) = log[P(y, m, ·)] and deconstruct as

z(y, m) = μ + αy + βm + γym, (4)

Fig. 3 The effect of different values of θ on the observations described in Fig. 2. The θ values illustrated
are the maximum values used in this study. The original data is shown as blue circles, while the time series
resulting from the application of each transformation is shown as orange diamonds
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where

μ = z(·, ·),
αy = z(y, ·) − μ,

βm = z(·, m) − μ,

γym = z(y, m) − (μ + αy + βm).

We then apply the perturbation scheme as described above with the θ parameters, but omit
the δ terms to get z∗(y,m). A transformed daily precipitation time series P ∗ is recovered
by setting

P ∗(y,m, d) = ζymdexp[z∗(y,m)], (5)

where

ζymd = P(y, m, d)

P (y, m, ·) .

1mm of rainfall is added to the first day of months which have no precipitation, as otherwise
P ∗(y,m, d) would be undefined (i.e., P(y, m, ·) = 0). This value is insignificant with
respect to the simulation of maize in both crop models.

Values for θ were chosen to encompass a wide range of systematic errors that may occur
in climate model datasets, to inform future studies whether there are potential issues when
assessing if a dataset is fit for purpose. We chose values for μθ to be +/-45 % of observed μ.
In this study’s region for the reference period 1970–1999, the maximum difference in mean
maximum summer temperature found between E-OBS observations and the CMIP3 ensem-
ble (Meehl et al. 2007) was 9 ◦C, which is 37 % of the observed mean (Hawkins et al.
2013b). Note that an analysis of the more recent CMIP5 climate model ensemble (Taylor
et al. 2012) indicates that its range of ensemble spread is not reduced compared to CMIP3
(Knutti and Sedláček 2013). It is difficult to obtain systematic errors in the standard devi-
ation of climate models at a range of temporal scales. Climate models have the potential
to have both higher and lower variance than observations depending on the selected scale.
Thus, to ensure we evaluated the effect of a wide range of systematic errors, we compared
crop model performance with z∗ datasets ranging from no variance through to 3x the respec-
tive values of E-OBS for αθ , βθ , γθ and δθ ). In order to provide a set of reference crop model
sensitivities that directly compare the relative importance of temperature and precipitation
errors, we transform precipitation with the same θ values as for temperature. Note that the
aim is not to directly equate numeric changes made to the temperature and precipitation
timeseries, but rather to compare the effects of changes in relative errors of their statistical
components.

Each component of the deconstruction was tested independently, e.g., the effect of alter-
ing μ was tested for values of μθ where θ = (μθ , 1, 1, 1, 1)). The effect of these errors were
assessed in terms of ΔRMSE and ΔCCOEF (defined below). ΔRMSE was chosen to
measure the accuracy of predictions, but since this metric heavily penalizes models that cor-
rectly capture the weather / yield relationship but incorrectly predict mean yield,5 ΔRMSE

was assessed in tandem with ΔCCOEF , which measures the correlation between observed
and simulated yields. Each crop model was calibrated using weather and crop data for the

5For example, a model with a flat response close to the mean can have a lower ΔRMSE than a model that
correctly predicts yield response but with an incorrect mean.



Climatic Change (2015) 132:93–109 101

period 1980–2002, and ΔRMSE and ΔCCOEF were defined as follows for the period
2003–2007. Let RMSEbaseline denote the RMSE of simulated yield and observed yield,
and RMSEtransf ormed denote the RMSE of simulated yield and observed yield after the
transformation has been applied. Similarly, let CCOEFbaseline denote the correlation coef-
ficient (CCOEF) of simulated yield and observed yield, and CCOEFtransf ormed denote the
CCOEF of simulated yield and observed yield after the transformation has been applied.
Then:

ΔRMSE = RMSEtransf ormed − RMSEbaseline

RMSEbaseline

∗ 100

ΔCCOEF = CCOEFtransf ormed − CCOEFbaseline

ΔRMSE and ΔCCOEF were calculated for each E-OBS grid cell using ST ATnonlinear ,
ST ATlinear , GLAMrf d and GLAMirr , and each assessment was repeated using country,
regional and departmental scale yield calibration data.

2.4 Overview of study design

In summary, the RMSEbaseline and CCOEFbaseline of crop model simulations was
measured for each of the 1,035 E-OBS grid locations, using:

– 4 crop model types (ST ATnonlinear , ST ATlinear , GLAMirr , GLAMrf d ), and
– 3 yield data sources (country, regional, and departmental scale observations).

Then, the above runs were repeated, measuring ΔRMSE and ΔCCOEF for all combina-
tions of the following climatic variations:

– 2 perturbed weather variables (temperature and precipitation),
– 5 altered weather variable components (μθ , αθ , βθ , γθ , δθ ), and
– 6 values for each weather variable component (see Figs. 6 and 7).

3 Results and discussion

Differences in the response to calibration and weather errors were found between the sta-
tistical crop models and the process-based crop models. Also, some key data features were
critically important to both model types. These results are discussed below.

3.1 The importance of harvest area

Figure 4 shows the RMSE and CCOEF of each of the model types (ST ATlinear ,
ST ATnonlinear , GLAMirr and GLAMrf d ) for each E-OBS grid cell. This data is plotted
against the harvest area of the respective grid cell (x-axis) and separated by the scale of the
yield calibration data. This figure shows a clear relationship between harvest area and model
skill. Regions with low reported harvest areas are relatively more likely to give poor results
with regional scale crop models when compared to regions with higher harvest areas. This
relationship is robust across both structurally distinct crop model types, which are based
on very different maize development and calibration assumptions. The effect is also robust
across all three scales of the yield observations, which each have distinct statistical variance.
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These crop models rely on a signal existing between the model-relevant weather statis-
tics and the model-relevant maize yield statistics. The strength of this signal in turn relies
on the statistics of both the crop and weather datasets to accurately reflect conditions
at the scale the crop model is being run. The lower the harvest area of a given grid
cell, the more likely it is that reported kg ha−1 crop yields are the result of local sub-
grid conditions not reflected in the interpolated grid cell weather. Thus the increasing
likelihood of poor model performance in grid cells with low maize harvest area indi-
cates an increasing mismatch between grid cell weather statistics and local crop yield
observations.

The spatial scale of yield calibration data also had an effect on crop model skill. At any
given value of harvest area, higher resolution yield data generally results in poorer model
skill. This effect is particularly evident for GLAM at harvest areas < 10 %, where dis-
tinct differences in model skill can be seen depending on the spatial scale of the yield
calibration data (see the CCOEF panels for GLAMirr and GLAMrf d in Fig. 4). This
finding is contrary to the expectation that aggregation error decreases as spatial resolu-
tion increases, since the weather and the yield data are more closely matched to those
experienced in reality (Hansen and Jones 2000). If model skill only relied on the spatial
compatibility of weather and crop observations, we would expect departmental scale cal-
ibration data to outperform country scale data, since departments are still larger than the
E-OBS grid cells. A possible explanation is that location-specific variations, such as man-
agement practices and weather conditions, cancel out over large areas, thus resulting in a
stronger weather/yield relationship in the aggregated data. This finding appears to question
the value of high resolution yield data for improving the skill of crop models. A focus on
accuracy is likely to be of greater value. However, since these models were not optimized for
local conditions, further work is clearly needed before definitive recommendations can be
made.

3.2 The effect of simulated climate errors

The results of the simulations described in Section 2.3 are summarized in Figs. 6
and 7. Figure 6 shows the mean model skill across grid cells, while Fig. 7 shows
the standard deviation. These results are restricted to grid cells with a harvest area
>= 20 %, to reduce the impact of crop model inconsistency at low harvest areas
described in Section 3.1. These grid cells are shown in Fig. 5. ST ATlinear and
ST ATnonlinear were similar in their responses to simulated errors. This was also the case
for GLAMrf d and GLAMirr . Here we only show the responses of ST ATnonlinear and
GLAMrf d .

Both the statistical model and GLAM were significantly more influenced by trans-
formations applied to temperature than those applied to precipitation. The fact that
both model types exhibited this effect indicates that this is a model-independent result.
Previous studies have also indicated a stronger maize yield response to temperature
than to precipitation (Lobell et al. 2013; Hawkins et al. 2013a). This result can in
part be explained by the method used to transform precipitation data. As described in
Section 2.3, precipitation data was perturbed differently to temperature, in order to retain
the pattern of days with rainfall, and to disallow negative values. By only adjusting
the intensity of observed rainfall events, the overall impact of precipitation transforma-
tions can be less than those of temperature. Reductions in mean precipitation by up
to 42 % did not significantly impact the skill of either model type – this is not a
water-limited scenario. The statistical model’s performance was affected by precipitation



104 Climatic Change (2015) 132:93–109

Fig. 5 E-OBS grid cells where the aggregated harvest area is >= 20 %

changes in average yearly deviation, and year dependent deviations from the seasonal
cycle.

The responses to temperature transformations differed significantly between GLAM and
the statistical models. GLAM was predominantly affected by transformations in climatic
mean (μ) and monthly deviations (βm) with low and high values of μθ and βθ , respec-
tively. Transformations resulting in over-estimation typically resulted in increases in GLAM
ΔRMSE, for all scales of yield observations (country, regional and departmental). An
exception is the case for increases in the daily deviations from the monthly mean (δymd )
when country level crop yield data is used. This yield dataset was by definition common to
all the grid cells analyzed, and exhibited the lowest standard deviation of the yield datasets
(Fig. 1).

The statistical model was predominantly influenced by reductions in overall mean
(μ), monthly deviations (βm and γym) and daily deviations from the monthly mean
(δymd ). Increases in transformations also impacted the performance of the statistical
model, but this was highly dependent on the scale of crop yield observations used.
Increased overall mean increased statistical model RMSE, but only in the case of coun-
try scale yield observations. Higher resolution yield observations resulted in the statistical
model exhibiting no negative change in skill for increases in overall mean. Positive
changes to the average yearly deviation (αy) resulted in greater loss of model skill
as crop yield resolution increased. Positive changes in monthly deviations and daily
deviations in the monthly mean also resulted in some loss of model skill, but again
where country level yield observations were used. Overall, the statistical model was
significantly more sensitive than GLAM to the spatial scale of the yield calibration
data.

The statistical model generally exhibited greater variance than GLAM across the grid
cells analyzed (Fig. 7). Unlike the statistical model, GLAM simulates processes in addition
to statistical interactions between temperature, precipitation and crop yield, making it less
susceptible to these transformations. However, large reductions in the overall mean (μ)
and monthly deviations (βm) of temperature did result in significant variation in GLAM’s
response.
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Care must be taken in drawing conclusions about the relative quality of these two
models using these results. Resistance or sensitivity to transformations is not an indi-
cation of model quality, but rather a pointer to what data errors should be of concern
to impacts modellers. Importantly, the relative effects of (1) individual weather data
transformations, and (2) the scale of yield calibration data, differs depending on model
type.

3.3 Comparison of statistical and process-based models

Statistical models can test for relatively simple relationships and extrapolate based on
observed relationships. Process-based models contain more assumptions (i.e. physiologi-
cal processes and crop-climate relationships). The statistical model is directly influenced
by the loss of statistically significant information in temperature, precipitation and yield
data, while the process-based model is affected by altered process interactions resulting
from such errors. The main difference between the two models used in this study is that the
statistical models are designed to be entirely fit to data, whereas GLAM is more constrained
in its behaviour by the processes that comprise the model. For either type of model, errors in
relevant input data characteristics will result in the model failing when used out of sample.
The degree to which such errors are relevant to each model is not clear a priori. Identify-
ing the data characteristics that each model is sensitive to, and quantifying their effects, are
pre-requisites for answering our research questions. Three observations are relevant:

First, the yield calibration data, in the absence of weather perturbations, affect the two
models in different ways. GLAM RMSE is more consistent across the three different yield
calibration datasets than the statistical models (Fig. 4). In contrast, for CCOEF at low har-
vest areas, the converse is true. This is not simply the result of more degrees of freedom
resulting in lower RMSE, since the non-linear statistical model performs slightly worse than
the linear model. Similarly, the greater number of degrees of freedom in GLAM do not
automatically result in an improved CCOEF – here GLAM is constrained by the processes
it simulates.

Second, susceptibility to weather errors vary according to the model, the variable and
the timescale of perturbation. Overall, GLAM is less susceptible to errors in precipi-
tation than the statistical model (Fig. 6). The calibration process in GLAM results in
some precipitation bias being corrected, even though this is not the primary aim of cal-
ibration (Challinor et al. 2005). Temperature perturbations tend to produce larger errors.
The sign and frequency of perturbations that produce the greatest impact tends to differ
between the two models. In the statistical model, reducing the amplitude of temperature
variation (αθ , βθ , γθ and δθ < 1) produces the largest errors. In GLAM, it is predomi-
nantly increases in amplitude that have the greatest impact on skill. GLAM is particularly
prone to errors in mean temperature (μθ ) and the magnitude of the seasonal cycle of
temperature (βθ ).

Third, the spatial coherence of model response across grid cells differs between GLAM
and the statistical models (Fig. 7). Errors in GLAM in response to weather perturbations
are generally more spatially systematic (across grid cells) than when those same perturba-
tions are introduced to the statistical models. This result reflects the fact that the spatial
calibration of GLAM is restricted to one single parameter, whereas the statistical mod-
els have more degrees of freedom across space. This suggests that weather biases may be
easier to correct in a process-based model than a statistical model, and agrees with pre-
vious work calling for greater attention to measurement error in statistical crop models
(Lobell 2013).
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4 Conclusions

Care must be used in interpreting these results outside the context of this study. A single
crop was analyzed in a single temperate country, and models were not optimized for local
conditions beyond the use of their automatic calibration routines. However, particularly
where similar results were found using different model structures, some general comments
can be made.

The process-based models and the statistical models used in this study were found to
be susceptible to different types of input data error. These two model types make different
choices of model design and calibration, so this result is not surprising. The contribution
here is in the quantification of the effects that different errors have on these model types.
The next step is to identify to what extent widely used crop model inputs, such as global
climate models, exhibit such errors.

For both regional scale crop model types, and for all three spatial scales of yield calibra-
tion data, we found that model skill is most reliable where growing area is above 10-15 %.
Thus information on area harvested would appear to be a priority for data collection efforts.

The GLAM process-based model can compensate for some loss in weather information
and was found to be resilient to differences in yield data resolution, while mean statistical
model response was resilient to overestimation errors. These differing responses to input
data error raise the intriguing possibility of using process-based and statistical models in
tandem to improve crop yield predictions.

Biases and errors in temperature, precipitation and yield input data influence the results
of crop models. Consequently, the management advice given on the basis of these models
is subject to influence by these errors. Understanding the detailed impact of different
error types helps improve crop yield projections, and can guide efforts to improve models
and datasets. The methodology introduced by this study can be applied to a range of
impact modelling scenarios that utilize daily weather data. Extending this study to assess
the potential impact of data errors on different model types, crops, and locations, would
provide modelers with key information for designing and evaluating impacts studies.
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Knutti R, Sedláček J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat
Clim Chang 3:369–373. doi:10.1038/nclimate1716

Koehler AK, Challinor AJ, Hawkins E, Asseng S (2013) Influences of increasing temper-
ature on Indian wheat: quantifying limits to predictability. Environ Res Lett 8:034,016.
doi:10.1088/1748-9326/8/3/034016

Lobell DB (2013) Errors in climate datasets and their effects on statistical crop models. Agric For Meteorol
170:58–66. doi:10.1016/j.agrformet.2012.05.013

Lobell DB, Asner GP (2003) Climate and management contributions to recent trends in US agricultural
yields. Science 299:1032

Lobell DB, Hammer GL, McLean G, Messina C, Roberts MJ, Schlenker W (2013) The critical
role of extreme heat for maize production in the United States. Nat Clim Chang 3:497–501.
doi:10.1038/nclimate1832

Meehl G, Covey C, Delworth T, Latif M, McAvaney B, Mitchell J, Stouffer R, Taylor K (2007) The WCRP
CMIP3 multi-model dataset: A new era in climate change research. Bull Am Meteorol Soc 88:1383–
1394. doi:10.1175/BAMS-88-9-1383

Monfreda C, Ramankutty N, Foley J (2008) Farming the planet. part 2: geographic distribution of crop areas,
yields, physiological types, and net primary production in the year 2000. Glob Biogeochem Cycles
22:GB1022. doi:10.1029/2007GB002947

Ramirez-Villegas J, Challinor A, Thornton P, Jarvis A (2013) Implications of regional improve-
ment in global climate models for agricultural impact research. Environ Res Lett 8:024,018.
doi:10.1088/1748-9326/8/2/024018

Romero CC, Hoogenboom G, Baigorria GA, Koo J, Gijsman AJ, Wood S (2012) Reanalysis of a
global soil database for crop and environmental modeling. Environ Model Softw 35:163–170.
doi:10.1016/j.envsoft.2012.02.018

Sacks W, Deryng D, Foley J, Ramankutty N (2010) Crop planting dates: an analysis of global patterns. Glob
Ecol Biogeogr 19:607–620. doi:10.1111/j.1466-8238.2010.00551.x
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