349 research outputs found

    Observations of pre-stellar cores

    Full text link
    Our understanding of the physical and chemical structure of pre-stellar cores, the simplest star-forming sites, has significantly improved since the last IAU Symposium on Astrochemistry (South Korea, 1999). Research done over these years has revealed that major molecular species like CO and CS systematically deplete onto dust grains at the interior of pre-stellar cores, while species like N2H+ and NH3 survive in the gas phase and can usually be detected towards the core centers. Such a selective behaviour of molecular species gives rise to a differentiated (onion-like) chemical composition, and manifests itself in molecular maps as a dichotomy between centrally peaked and ring-shaped distributions. From the point of view of star-formation studies, the identification of molecular inhomogeneities in cores helps to resolve past discrepancies between observations made using different tracers, and brings the possibility of self-consistent modelling of the core internal structure. Here I present recent work on determining the physical and chemical structure of two pre-stellar cores, L1498 and L1517B, using observations in a large number of molecules and Monte Carlo radiative transfer analysis. These two cores are typical examples of the pre-stellar core population, and their chemical composition is characterized by the presence of large freeze out holes in most molecular species. In contrast with these chemically processed objects, a new population of chemically young cores has started to emerge. The characteristics of its most extreme representative, L1521E, are briefly reviewed.Comment: 10 pages, 5 figures. To appear in IAU 231 conf. proc. "Astrochemistry: Recent Successes and Current Challenges," eds. D.C. Lis, G.A. Blake, and E. Herbs

    Nitrogen chemistry and depletion in starless cores

    Full text link
    We investigated the chemistry of nitrogen--containing species, principally isotopomers of CN, HCN, and HNC, in a sample of pre-protostellar cores. We used the IRAM 30 m telescope to measure the emission in rotational and hyperfine transitions of CN, HCN, 13CN, H13CN, HN13C, and HC15N, in L 1544, L 183, Oph D, L 1517B, L 310. The observations were made along axial cuts through the dust emission peak, at a number of regularly--spaced offset positions. The observations were reduced and analyzed to obtain the column densities, using the measurements of the less abundant isotopic variants in order to minimize the consequences of finite optical depths in the lines. The observations were compared with the predictions of a free--fall gravitational collapse model, which incorporates a non-equilibrium treatment of the relevant chemistry. We found that CN, HCN, and HNC remain present in the gas phase at densities well above that at which CO depletes on to grains. The CN:HCN and the HNC:HCN abundance ratios are larger than unity in all the objects of our sample. Furthermore, there is no observational evidence for large variations of these ratios with increasing offset from the dust emission peak and hence with density. Whilst the differential freeze--out of CN and CO can be understood in terms of the current chemistry, the behaviour of the CN:HCN ratio is more difficult to explain. Models suggest that most nitrogen is not in the gas phase but may be locked in ices. Unambiguous conclusions require measurements of the rate coefficients of the key neutral--neutral reactions at low temperatures

    The chemical structure of the very young starless core L1521E

    Get PDF
    L1521E is a dense starless core in Taurus that was found to have relatively low molecular depletion by earlier studies, thus suggesting a recent formation. We aim to characterize the chemical structure of L1521E and compare it to the more evolved L1544 pre-stellar core. We have obtained \sim2.5×\times2.5 arcminute maps toward L1521E using the IRAM-30m telescope in transitions of various species. We derived abundances for the species and compared them to those obtained toward L1544. We estimated CO depletion factors. Similarly to L1544, cc-C3_3H2_2 and CH3_3OH peak at different positions. Most species peak toward the cc-C3_3H2_2 peak. The CO depletion factor derived toward the HerschelHerschel dust peak is 4.3±\pm1.6, which is about a factor of three lower than that toward L1544. The abundances of sulfur-bearing molecules are higher toward L1521E than toward L1544 by factors of \sim2-20. The abundance of methanol is similar toward the two cores. The higher abundances of sulfur-bearing species toward L1521E than toward L1544 suggest that significant sulfur depletion takes place during the dynamical evolution of dense cores, from the starless to pre-stellar stage. The CO depletion factor measured toward L1521E suggests that CO is more depleted than previously found. Similar CH3_3OH abundances between L1521E and L1544 hint that methanol is forming at specific physical conditions in Taurus, characterized by densities of a few ×\times104^4 cm3^{-3} and NN(H2_2)\gtrsim1022^{22} cm2^{-2}, when CO starts to catastrophically freeze-out, while water can still be significantly photodissociated, so that the surfaces of dust grains become rich in solid CO and CH3_3OH, as already found toward L1544. Methanol can thus provide selective crucial information about the transition region between dense cores and the surrounding parent cloud.Comment: Accepted for publication in A&A, abstract abridge

    CCH in prestellar cores

    Full text link
    We study the abundance of CCH in prestellar cores both because of its role in the chemistry and because it is a potential probe of the magnetic field. We also consider the non-LTE behaviour of the N=1-0 and N=2-1 transitions of CCH and improve current estimates of the spectroscopic constants of CCH. We used the IRAM 30m radiotelescope to map the N=1-0 and N=2-1 transitions of CCH towards the prestellar cores L1498 and CB246. Towards CB246, we also mapped the 1.3 mm dust emission, the J=1-0 transition of N2H+ and the J=2-1 transition of C18O. We used a Monte Carlo radiative transfer program to analyse the CCH observations of L1498. We derived the distribution of CCH column densities and compared with the H2 column densities inferred from dust emission. We find that while non-LTE intensity ratios of different components of the N=1-0 and N=2-1 lines are present, they are of minor importance and do not impede CCH column density determinations based upon LTE analysis. Moreover, the comparison of our Monte-Carlo calculations with observations suggest that the non-LTE deviations can be qualitatively understood. For L1498, our observations in conjunction with the Monte Carlo code imply a CCH depletion hole of radius 9 x 10^{16} cm similar to that found for other C-containing species. We briefly discuss the significance of the observed CCH abundance distribution. Finally, we used our observations to provide improved estimates for the rest frequencies of all six components of the CCH(1-0) line and seven components of CCH(2-1). Based on these results, we compute improved spectroscopic constants for CCH. We also give a brief discussion of the prospects for measuring magnetic field strengths using CCH.Comment: 14 pages, 13 figures, to be published in Astronomy and Astrophysic

    A highly collimated, extremely high velocity outflow in Taurus

    Full text link
    We present the first case of a highly collimated, extremely high velocity bipolar outflow in Taurus. It is powered by the low-luminosity (0.4 L_sun) source IRAS 04166+2706 and contains gas accelerated up to 50 km/s with respect to the ambient cloud both toward the blue and the red (uncorrected for projection). At the highest velocities, the outflow collimation factor exceeds 20, and the gas displays a very high degree of spatial symmetry. This very fast gas presents multiple maxima, and most likely arises from the acceleration of ambient material by a time-variable jet-like stellar wind. When scaled for luminosity, the outflow parameters of IRAS 04166 are comparable to those of other extremely high velocity outflows like L1448, indicating that even the very quiescent star-formation mode of Taurus can produce objects powering very high energy flows (L_mec/L_* > 0.15).Comment: 5pages, 3 figures. Accepted by Astronomy and Astrophysics Letters. v2 clarfies relation with HH390 thanks to private communication from John Bally and Josh Walawende

    CN in prestellar cores

    Full text link
    Determining the structure of and the velocity field in prestellar cores is essential to understanding protostellar evolution.} {We have observed the dense prestellar cores L 1544 and L 183 in the N=10N = 1 \to 0 rotational transition of CN and \thcn in order to test whether CN is depleted in the high--density nuclei of these cores.} {We have used the IRAM 30 m telescope to observe along the major and minor axes of these cores. We compare these observations with the 1 mm dust emission, which serves as a proxy for the hydrogen column density.}{We find that while CN\jone is optically thick, the distribution of \thcn\jone intensity follows the dust emission well, implying that the CN abundance does not vary greatly with density. We derive an abundance ratio of \rm [CN]/[\hh]=\dix{-9} in L 183 and 1-3\tdix{-9} in L 1544, which, in the case of L 183, is similar to previous estimates obtained by sampling lower--density regions of the core.}{We conclude that CN is not depleted towards the high--density peaks of these cores and thus behaves like the N-containing molecules \nnhp and \nhhh. CN is, to our knowledge, the first C--containing molecule to exhibit this characteristic.Comment: Accepted for publication in A&A Letter

    Dense Cores in Dark Clouds. XIV. N2H+(1-0) maps of dense cloud cores

    Get PDF
    We present results of an extensive mapping survey of N2H+(1-0) in about 60 low mass cloud cores already mapped in the NH3(1,1) inversion transition line. The survey has been carried out at the FCRAO antenna with an angular resolution about 1.5 times finer than the previous ammonia observations. Cores with stars typically have map sizes about a factor of two smaller for N2H+ than for NH3, indicating the presence of denser and more centrally concentrated gas compared to starless cores. Significant correlations are found between NH3 and N2H+ column densities and excitation temperatures in starless cores, but not in cores with stars, suggesting a different chemical evolution of the two species. Velocity gradients range between 0.5 and 6 km/s/pc, similar to what has been found with NH3 data. ``Local'' velocity gradients show significant variation in both magnitude and direction, suggesting the presence of complexmotions not interpretable as simple solid body rotation. Integrated intensity profiles of starless cores present a ``central flattening'' and are consistent with a spherically symmetric density law n ~ r^{-1.2} for r < ~0.03 pc and n ~ r^{-2} at larger r. Cores with stars are better modelled with single density power laws with n ~ r^{-2}. Line widths change across the core but we did not find a general trend. The deviation in line width correlates with the mean line width, suggesting that the line of sight contains ~ 10 coherence lengths. The corresponding value of the coherence length, ~ 0.01 pc, is similar to the expected cutoff wavelength for MHD waves. This similarity may account for the increased ``coherence'' of line widths on small scales. Despite of the finer angular resolution, the majority of N2H+ and NH3 maps show a similar ``simple'' structure, with single peaks and no elongation.Comment: 62 pages, 11 figures, ApJ, in pres

    Shells, jets, and internal working surfaces in the molecular outflow from IRAS 04166+2706

    Full text link
    Context: IRAS 04166+2706 in Taurus is one of the most nearby young stellar objects whose molecular outflow contains a highly collimated fast component. Methods: We have observed the IRAS 04166+2706 outflow with the IRAM Plateau de Bure interferometer in CO(J=2-1) and SiO(J=2-1) achieving angular resolutions between 2'' and 4''. To improve the quality of the CO(2-1) images, we have added single dish data to the interferometer visibilities. Results: The outflow consists of two distinct components. At velocities <10 km/s, the gas forms two opposed, approximately conical shells that have the YSO at their vertex. These shells coincide with the walls of evacuated cavities and seem to result from the acceleration of the ambient gas by a wide-angle wind. At velocities >30 km/s, the gas forms two opposed jets that travel along the center of the cavities and whose emission is dominated by a symmetric collection of at least 7 pairs of peaks. The velocity field of this component presents a sawtooth pattern with the gas in the tail of each peak moving faster than the gas in the head. This pattern, together with a systematic widening of the peaks with distance to the central source, is consistent with the emission arising from internal working surfaces traveling along the jet and resulting from variations in the velocity field of ejection. We interpret this component as the true protostellar wind, and we find its composition consistent with a chemical model of such type of wind. Conclusions: Our results support outflow wind models that have simultaneously wide-angle and narrow components, and suggest that the EHV peaks seen in a number of outflows consist of internally-shocked wind material.Comment: 13 pages, 10 figures. To appear in A&
    corecore