15 research outputs found

    The T2K ND280 Off-Axis Pi-Zero Detector

    Full text link
    The Pi-Zero detector (P{\O}D) is one of the subdetectors that makes up the off-axis near detector for the Tokai-to-Kamioka (T2K) long baseline neutrino experiment. The primary goal for the P{\O}D is to measure the relevant cross sections for neutrino interactions that generate pi-zero's, especially the cross section for neutral current pi-zero interactions, which are one of the dominant sources of background to the electron neutrino appearance signal in T2K. The P{\O}D is composed of layers of plastic scintillator alternating with water bags and brass sheets or lead sheets and is one of the first detectors to use Multi-Pixel Photon Counters (MPPCs) on a large scale.Comment: 17 pages, submitted to NIM

    Comparing proton momentum distributions in A=2A=2 and 3 nuclei via 2^2H 3^3H and 3^3He (e,eâ€Čp)(e, e'p) measurements

    Full text link
    We report the first measurement of the (e,eâ€Čp)(e,e'p) reaction cross-section ratios for Helium-3 (3^3He), Tritium (3^3H), and Deuterium (dd). The measurement covered a missing momentum range of 40≀pmiss≀55040 \le p_{miss} \le 550 MeV/c/c, at large momentum transfer (⟹Q2⟩≈1.9\langle Q^2 \rangle \approx 1.9 (GeV/c/c)2^2) and xB>1x_B>1, which minimized contributions from non quasi-elastic (QE) reaction mechanisms. The data is compared with plane-wave impulse approximation (PWIA) calculations using realistic spectral functions and momentum distributions. The measured and PWIA-calculated cross-section ratios for 3^3He/d/d and 3^3H/d/d extend to just above the typical nucleon Fermi-momentum (kF≈250k_F \approx 250 MeV/c/c) and differ from each other by ∌20%\sim 20\%, while for 3^3He/3^3H they agree within the measurement accuracy of about 3\%. At momenta above kFk_F, the measured 3^3He/3^3H ratios differ from the calculation by 20%−50%20\% - 50\%. Final state interaction (FSI) calculations using the generalized Eikonal Approximation indicate that FSI should change the 3^3He/3^3H cross-section ratio for this measurement by less than 5\%. If these calculations are correct, then the differences at large missing momenta between the 3^3He/3^3H experimental and calculated ratios could be due to the underlying NNNN interaction, and thus could provide new constraints on the previously loosely-constrained short-distance parts of the NNNN interaction.Comment: 8 pages, 3 figures (4 panels

    Design, Construction, and Performance of the GEM based Radial Time Projection Chamber for the BONuS12 Experiment with CLAS12

    No full text
    International audienceA new radial time projection chamber based on Gas Electron Multiplier amplification layers was developed for the BONuS12 experiment in Hall B at Jefferson Lab. This device represents a significant evolutionary development over similar devices constructed for previous experiments, including cylindrical amplification layers constructed from single continuous GEM foils with less than 1% dead area. Particular attention had been paid to producing excellent geometric uniformity of all electrodes, including the very thin metalized polyester film of the cylindrical cathode. This manuscript describes the design, construction, and performance of this new detector

    The T2K experiment

    Get PDF
    The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle Ξ13 by observing Μe appearance in a ΜΌ beam. It also aims to make a precision measurement of the known oscillation parameters, and sin22Ξ23, via ΜΌ disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem

    Revealing the structure of light pseudoscalar mesons at the electron–ion collider

    Get PDF
    International audienceThe questions of how the bulk of the Universe’s visible mass emerges and how it is manifest in the existence and properties of hadrons are profound, and probe the heart of strongly interacting matter. Paradoxically, the lightest pseudoscalar mesons appear to be key to a further understanding of the emergent mass and structure mechanisms. These mesons, namely, the pion and kaon, are the Nambu–Goldstone boson modes of quantum chromodynamics (QCD). Unravelling their partonic structure and the interplay between emergent and Higgs-boson mass mechanisms is a common goal of three interdependent approaches—continuum QCD phenomenology, lattice-regularised QCD, and the global analysis of parton distributions—linked to experimental measurements of hadron structure. Experimentally, the anticipated electron–ion collider will enable a revolution in our ability to study pion and kaon structures, accessed by scattering from the ‘meson cloud’ of the proton through the Sullivan process. With the goal of enabling a suite of measurements that can address these questions, we examine key reactions that identify the critical detector-system requirements needed to map tagged pion and kaon cross-sections over a wide range of kinematics. The excellent prospects for extracting pion structural, functional, and form-factor data are outlined, and similar prospects for kaon structures are discussed in the context of a worldwide programme. The successful completion of the programme outlined herein will deliver deep, far-reaching insights into the emergence of pions and kaons, their properties, and their role as QCD’s Goldstone boson modes

    Jefferson Lab Hall C: Precision Physics at the Luminosity Frontier

    No full text
    Over the last three decades, Hall C has been a key contributor to progress in the understanding of hadron structure and interactions. An outline of a potential future Hall C physics program focused on precision measurements of small cross sections is presented. A detailed overview of this unique facility, whose flexible configuration allows many opportunities for new experimental equipment that help address a wide range of questions in hadronic physics, is included as well

    First Measurement of the EMC Effect in 10^{10}B and 11^{11}B

    No full text
    International audienceThe nuclear dependence of the inclusive inelastic electron scattering cross section (the EMC effect) has been measured for the first time in 10^{10}B and 11^{11}B. Previous measurements of the EMC effect in A≀12A \leq 12 nuclei showed an unexpected nuclear dependence; 10^{10}B and 11^{11}B were measured to explore the EMC effect in this region in more detail. Results are presented for 9^9Be, 10^{10}B, 11^{11}B, and 12^{12}C at an incident beam energy of 10.6~GeV. The EMC effect in the boron isotopes was found to be similar to that for 9^9Be and 12^{12}C, yielding almost no nuclear dependence in the EMC effect in the range A=4−12A=4-12. This represents important, new data supporting the hypothesis that the EMC effect depends primarily on the local nuclear environment due to the cluster structure of these nuclei

    First Measurement of the EMC effect in <math><mmultiscripts><mi mathvariant="normal">B</mi><mprescripts/><none/><mn>10</mn></mmultiscripts></math> and <math><mmultiscripts><mi mathvariant="normal">B</mi><mprescripts/><none/><mn>11</mn></mmultiscripts></math>

    No full text
    International audienceThe nuclear dependence of the inclusive inelastic electron scattering cross section (the EMC effect) has been measured for the first time in B10 and B11. Previous measurements of the EMC effect in A≀12 nuclei showed an unexpected nuclear dependence; B10 and B11 were measured to explore the EMC effect in this region in more detail. Results are presented for Be9, B10, B11, and C12 at an incident beam energy of 10.6 GeV. The EMC effect in the boron isotopes was found to be similar to that for Be9 and C12, yielding almost no nuclear dependence in the EMC effect in the range A=4–12. This represents important new data supporting the hypothesis that the EMC effect depends primarily on the local nuclear environment due to the cluster structure of these nuclei
    corecore