269 research outputs found

    Solar off-limb line widths: Alfven waves, ion-cyclotron waves, and preferential heating

    Full text link
    Alfven waves and ion-cyclotron absorption of high-frequency waves are frequently brought into models devoted to coronal heating and fast solar-wind acceleration. Signatures of ion-cyclotron resonance have already been observed in situ in the solar wind (HELIOS spacecrafts) and, recently, in the upper corona (UVCS/SOHO remote-sensing results). We propose a method to constrain both the Alfven wave amplitude and the preferential heating induced by ion-cyclotron resonance, above a partially developed polar coronal hole observed with the SUMER/SOHO spectrometer. The instrumental stray light contribution is first substracted from the spectra. By supposing that the non-thermal velocity is related to the Alfven wave amplitude, it is constrained through a density diagnostic and the gradient of the width of the Mg X 625 A line. The temperatures of several coronal ions, as functions of the distance above the limb, are then determined by substracting the non-thermal component to the observed line widths. The effect of stray light explains the apparent decrease with height in the width of several spectral lines, this decrease usually starting about 0.1-0.2 Rs above the limb. This result rules out any direct evidence of damping of the Alfven waves, often suggested by other authors. We also find that the ions with the smallest charge-to-mass ratios are the hottest ones at a fixed altitude and that they are subject to a stronger heating, as compared to the others, between 57" and 102" above the limb. This constitutes a serious clue to ion-cyclotron preferential heating.Comment: 15 pages, 12 figures, 3 table

    The Spectroscopic Footprint of the Fast Solar Wind

    Full text link
    We analyze a large, complex equatorial coronal hole (ECH) and its immediate surroundings with a focus on the roots of the fast solar wind. We start by demonstrating that our ECH is indeed a source of the fast solar wind at 1AU by examining in situ plasma measurements in conjunction with recently developed measures of magnetic conditions of the photosphere, inner heliosphere and the mapping of the solar wind source region. We focus the bulk of our analysis on interpreting the thermal and spatial dependence of the non-thermal line widths in the ECH as measured by SOHO/SUMER by placing the measurements in context with recent studies of ubiquitous Alfven waves in the solar atmosphere and line profile asymmetries (indicative of episodic heating and mass loading of the coronal plasma) that originate in the strong, unipolar magnetic flux concentrations that comprise the supergranular network. The results presented in this paper are consistent with a picture where a significant portion of the energy responsible for the transport of heated mass into the fast solar wind is provided by episodically occurring small-scale events (likely driven by magnetic reconnection) in the upper chromosphere and transition region of the strong magnetic flux regions that comprise the supergranular network.Comment: 25 pages, accepted to appear in the Astrophysical Journal. Supporting movies can be found in http://download.hao.ucar.edu/pub/mscott/papers/ECH

    Sizes of transition-region structures in coronal holes and in the quiet Sun

    Full text link
    We study the height variations of the sizes of chromospheric and transition-region features in a small coronal hole and the adjacent quiet Sun, considering images of the intensity, Doppler shift, and non-thermal motion of ultraviolet emission lines as measured by SUMER, together with the magnetic field as obtained by extrapolation from photospheric magnetograms. In order to estimate the characteristic sizes of the different features present in the chromosphere and transition region, we have calculated the autocorrelation function for the images as well as the corresponding extrapolated magnetic field at different heights. The HWHM of the autocorrelation function is considered to be the characteristic size of the feature shown in the corresponding image. Our results indicate that, in both the coronal hole and quiet Sun, the HWHM of the intensity image is larger than that of the images of Doppler-shift and non-thermal width at any given altitude. The HWHM of the intensity image is smaller in the chromosphere than in the TR, where the sizes of intensity features of lines at different temperatures are almost the same. But in the upper part of the transition region, the intensity size increases more strongly with temperature in the coronal hole than in the quiet Sun. We also studied the height variations of the HWHM of the magnetic field magnitude B and its component |Bz|, and found they are equal to each other at a certain height below 40 Mm in the coronal hole. The height variations of the HWHM of |Bz/B| seem to be consistent with the temperature variations of the intensity size. Our results suggest that coronal loops are much lower, and magnetic structures expand through the upper TR and lower corona much more strongly with height in the coronal hole than in the quiet Sun.Comment: 6 pages, 4 figure

    New views on the emission and structure of the solar transition region

    Full text link
    The Sun is the only star that we can spatially resolve and it can be regarded as a fundamental plasma laboratory of astrophysics. The solar transition region (TR), the layer between the solar chromosphere and corona, plays an important role in solar wind origin and coronal heating. Recent high-resolution observations made by SOHO, TRACE, and Hinode indicate that the TR is highly nonuniform and magnetically structured. Through a combination of spectroscopic observations and magnetic field extrapolations, the TR magnetic structures and plasma properties have been found to be different in coronal holes and in the quiet Sun. In active regions, the TR density and temperature structures also differ in sunspots and the surrounding plage regions. Although the TR is believed to be a dynamic layer, quasi-steady flows lasting from several hours to several days are often present in the quiet Sun, coronal holes, and active regions, indicating some kind of plasma circulation/convection in the TR and corona. The emission of hydrogen Lyman lines, which originates from the lower TR, has also been intensively investigated in the recent past. Observations show clearly that the flows and dynamics in the middle and upper TR can greatly modify the Lyman line profiles.Comment: This paper has been withdrawn by the authors. This is a repetition of another record in ADS: New Astronomy Reviews, Volume 54, Issue 1-2, p. 13-3

    The quiet Sun average Doppler shift of coronal lines up to 2 MK

    Full text link
    The average Doppler shift shown by spectral lines formed from the chromosphere to the corona reveals important information on the mass and energy balance of the solar atmosphere, providing an important observational constraint to any models of the solar corona. Previous spectroscopic observations of vacuum ultra-violet (VUV) lines have revealed a persistent average wavelength shift of lines formed at temperatures up to 1 MK. At higher temperatures, the behaviour is still essentially unknown. Here we analyse combined SUMER/SoHO and EIS/Hinode observations of the quiet Sun around disk centre to determine, for the first time, the average Doppler shift of several spectral lines formed between 1 and 2 MK, where the largest part of the quiet coronal emission is formed. The measurements are based on a novel technique applied to EIS spectra to measure the difference in Doppler shift between lines formed at different temperatures. Simultaneous wavelength-calibrated SUMER spectra allow establishing the absolute value at the reference temperature of 1 MK. The average line shifts at 1 MK < T < 1.8 MK are modestly, but clearly bluer than those observed at 1 MK. By accepting an average blue shift of about (-1.8+/-0.6) km/s at 1 MK (as provided by SUMER measurements), this translates into a maximum Doppler shift of (-4.4+/-2.2) km/s around 1.8 MK. The measured value appears to decrease to about (-1.3+/-2.6) km/s at the Fe XV formation temperature of 2.1 MK. The measured average Doppler shift between 0.01 and 2.1 MK, for which we provide a parametrisation, appears to be qualitatively and roughly quantitatively consistent with what foreseen by 3-D coronal models where heating is produced by dissipation of currents induced by photospheric motions and by reconnection with emerging magnetic flux.Comment: 9 pages, 10 figures. Astronomy and Astrophysics (in press

    A search for edge-on galaxy lenses in the CFHT Legacy Survey

    Full text link
    [ABRIDGED] The new generation of wide field optical imaging like the Canada France Hawaii Telescope Legacy Survey (CFHTLS) enables discoveries of all types of gravitational lenses present in the sky. The Strong Lensing Legacy Survey (SL2S) project has started an inventory, respectively for clusters or groups of galaxies lenses, and for Einstein rings around distant massive ellipticals. Here we attempt to extend this inventory by finding lensing events produced by massive edge-on disk galaxies which remains a poorly documented class of lenses. We implement and test an automated search procedure of edge-on galaxy lenses in the CFHTLS Wide fields with magnitude 18Comment: several major edits, 8 pages, A&A accepte

    Horizontal supergranule-scale motions inferred from TRACE ultraviolet observations of the chromosphere

    Full text link
    We study horizontal supergranule-scale motions revealed by TRACE observation of the chromospheric emission, and investigate the coupling between the chromosphere and the underlying photosphere. A highly efficient feature-tracking technique called balltracking has been applied for the first time to the image sequences obtained by TRACE (Transition Region and Coronal Explorer) in the passband of white light and the three ultraviolet passbands centered at 1700 {\AA}, 1600 {\AA}, and 1550 {\AA}. The resulting velocity fields have been spatially smoothed and temporally averaged in order to reveal horizontal supergranule-scale motions that may exist at the emission heights of these passbands. We find indeed a high correlation between the horizontal velocities derived in the white-light and ultraviolet passbands. The horizontal velocities derived from the chromospheric and photospheric emission are comparable in magnitude. The horizontal motions derived in the UV passbands might indicate the existence of a supergranule-scale magnetoconvection in the chromosphere, which may shed new light on the study of mass and energy supply to the corona and solar wind at the height of the chromosphere. However, it is also possible that the apparent motions reflect the chromospheric brightness evolution as produced by acoustic shocks which might be modulated by the photospheric granular motions in their excitation process, or advected partly by the supergranule-scale flow towards the network while propagating upward from the photosphere. To reach a firm conclusion, it is necessary to investigate the role of granular motions in the excitation of shocks through numerical modeling, and future high-cadence chromospheric magnetograms must be scrutinized.Comment: 5 figures, accepted by Astronomy & Astrophysic

    Modeling the (upper) solar atmosphere including the magnetic field

    Get PDF
    The atmosphere of the Sun is highly structured and dynamic in nature. From the photosphere and chromosphere into the transition region and the corona plasma-β\beta changes from above to below one, i.e. while in the lower atmosphere the energy density of the plasma dominates, in the upper atmosphere the magnetic field plays the governing role -- one might speak of a ``magnetic transition''. Therefore the dynamics of the overshooting convection in the photosphere, the granulation, is shuffling the magnetic field around in the photosphere. This leads not only to a (re-)structuring of the magnetic field in the upper atmosphere, but induces also the dynamic reaction of the coronal plasma e.g. due to reconnection events. Therefore the (complex) structure and the interaction of various magnetic patches is crucial to understand the structure, dynamics and heating of coronal plasma as well as its acceleration into the solar wind. The present article will emphasize the need for three-dimensional modeling accounting for the complexity of the solar atmosphere to understand these processes. Some advances on 3D modeling of the upper solar atmosphere in magnetically closed as well as open regions will be presented together with diagnostic tools to compare these models to observations. This highlights the recent success of these models which in many respects closely match the observations.Comment: 14 pages, 7 figures, accepted for publication in Adv. Space Re
    corecore