26 research outputs found

    Low concentrations of the stable prostaglandin endoperoxide U44069 stimulate shape change in quin2-loaded platelets without a measurable increase in [Ca2+]i

    Get PDF
    AbstractDose-response relationships for raised cytoplasmic free calcium concentration, [Ca2+]i, and shape change were measured simultaneously in quin2-loaded human platelets. With the calcium ionophore ionomycin the threshold [Ca2+]i for shape change was 300 nM with a maximal response at 800 nM. With 1 mM external Ca2+ the U44069 concentrations required to stimulate half-maximal shape change and an increase in [Ca2+]i were 2 and 41 nM, respectively. For PAF these values were 8.7 and 164 pgml, respectively. Low concentrations of U44069 and PAF evoked substantial shape change without any rise in [Ca2+]i. In the absence of external Ca2+, U44069 stimulated half-maximal shape change at 2 nM, and half-maximal elevation of [Ca2+]i at 69 nM: here, increased [Ca2+i never reached the threshold [Ca2+i for shape change derived with ionomycin. These results suggest that some transduction mechanism other than elevated [Ca2+]i, as yet unidentified, can cause shape change.U44069Ionomycin Ca2+Shape changePlateletPlatelet-activating facto

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity
    corecore