266 research outputs found

    Multiscale photosynthetic exciton transfer

    Full text link
    Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest sustained coherent exciton transfer may be possible over distances large compared with nearest-neighbour (n-n) chromophore separations, at physiological temperatures, in a clustered network with small static disorder. This may support findings suggesting long-range coherence in algal chloroplasts, and provides a framework for engineering large chromophore or quantum dot high-temperature exciton transfer networks.Comment: 9 pages, 6 figures. A significantly updated version is now published online by Nature Physics (2012

    Star Formation in Galaxies Along the Hubble Sequence

    Get PDF
    Observations of star formation rates (SFRs) in galaxies provide vital clues to the physical nature of the Hubble sequence, and are key probes of the evolutionary properties of galaxies. The focus of this review is on the broad patterns in the star formation properties of galaxies along the Hubble sequence, and their implications for understanding galaxy evolution and the physical processes that drive the evolution. Star formation in the disks and nuclear regions of galaxies are reviewed separately, then discussed within a common interpretive framework. The diagnostic methods used to measure SFRs are also reviewed, and a self-consistent set of SFR calibrations is presented as an aid to workers in the field.Comment: 41 pages, with 9 figures. To appear in Volume 36 of the Annual Review of Astronomy and Astrophysic

    Letter processing and font information during reading: beyond distinctiveness, where vision meets design

    Get PDF
    Letter identification is a critical front end of the reading process. In general, conceptualizations of the identification process have emphasized arbitrary sets of distinctive features. However, a richer view of letter processing incorporates principles from the field of type design, including an emphasis on uniformities across letters within a font. The importance of uniformities is supported by a small body of research indicating that consistency of font increases letter identification efficiency. We review design concepts and the relevant literature, with the goal of stimulating further thinking about letter processing during reading

    Corporate philanthropy, political influence, and health policy

    Get PDF
    Background The Framework Convention of Tobacco Control (FCTC) provides a basis for nation states to limit the political effects of tobacco industry philanthropy, yet progress in this area is limited. This paper aims to integrate the findings of previous studies on tobacco industry philanthropy with a new analysis of British American Tobacco's (BAT) record of charitable giving to develop a general model of corporate political philanthropy that can be used to facilitate implementation of the FCTC. Method Analysis of previously confidential industry documents, BAT social and stakeholder dialogue reports, and existing tobacco industry document studies on philanthropy. Results The analysis identified six broad ways in which tobacco companies have used philanthropy politically: developing constituencies to build support for policy positions and generate third party advocacy; weakening opposing political constituencies; facilitating access and building relationships with policymakers; creating direct leverage with policymakers by providing financial subsidies to specific projects; enhancing the donor's status as a source of credible information; and shaping the tobacco control agenda by shifting thinking on the importance of regulating the market environment for tobacco and the relative risks of smoking for population health. Contemporary BAT social and stakeholder reports contain numerous examples of charitable donations that are likely to be designed to shape the tobacco control agenda, secure access and build constituencies. Conclusions and Recommendations Tobacco companies' political use of charitable donations underlines the need for tobacco industry philanthropy to be restricted via full implementation of Articles 5.3 and 13 of the FCTC. The model of tobacco industry philanthropy developed in this study can be used by public health advocates to press for implementation of the FCTC and provides a basis for analysing the political effects of charitable giving in other industry sectors which have an impact on public health such as alcohol and food

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd

    A Helix Replacement Mechanism Directs Metavinculin Functions

    Get PDF
    Cells require distinct adhesion complexes to form contacts with their neighbors or the extracellular matrix, and vinculin links these complexes to the actin cytoskeleton. Metavinculin, an isoform of vinculin that harbors a unique 68-residue insert in its tail domain, has distinct actin bundling and oligomerization properties and plays essential roles in muscle development and homeostasis. Moreover, patients with sporadic or familial mutations in the metavinculin-specific insert invariably develop fatal cardiomyopathies. Here we report the high resolution crystal structure of the metavinculin tail domain, as well as the crystal structures of full-length human native metavinculin (1,134 residues) and of the full-length cardiomyopathy-associated ΔLeu954 metavinculin deletion mutant. These structures reveal that an α-helix (H1′) and extended coil of the metavinculin insert replace α-helix H1 and its preceding extended coil found in the N-terminal region of the vinculin tail domain to form a new five-helix bundle tail domain. Further, biochemical analyses demonstrate that this helix replacement directs the distinct actin bundling and oligomerization properties of metavinculin. Finally, the cardiomyopathy associated ΔLeu954 and Arg975Trp metavinculin mutants reside on the replaced extended coil and the H1′ α-helix, respectively. Thus, a helix replacement mechanism directs metavinculin's unique functions

    Possible extracardiac predictors of aortic dissection in Marfan syndrome

    Get PDF
    BACKGROUND: According to previous studies, aortic diameter alone seems to be insufficient to predict the event of aortic dissection in Marfan syndrome (MFS). Determining the optimal schedule for preventive aortic root replacement (ARR) aortic growth rate is of importance, as well as family history, however, none of them appear to be decisive. Thus, the aim of this study was to search for potential predictors of aortic dissection in MFS. METHODS: A Marfan Biobank consisting of 79 MFS patients was established. Thirty-nine MFS patients who underwent ARR were assigned into three groups based on the indication for surgery (dissection, annuloaortic ectasia and prophylactic surgery). The prophylactic surgery group was excluded from the study. Transforming growth factor-beta (TGF-beta) serum levels were measured by ELISA, relative expression of c-Fos, matrix metalloproteinase 3 and 9 (MMP-3 and -9) were assessed by RT-PCR. Clinical parameters, including anthropometric variables - based on the original Ghent criteria were also analyzed. RESULTS: Among patients with aortic dissection, TGF-beta serum level was elevated (43.78 +/- 6.51 vs. 31.64 +/- 4.99 ng/l, p < 0.0001), MMP-3 was up-regulated (Ln2alpha = 1.87, p = 0.062) and striae atrophicae were more common (92% vs. 41% p = 0.027) compared to the annuloaortic ectasia group. CONCLUSIONS: We found three easily measurable parameters (striae atrophicae, TGF-beta serum level, MMP-3) that may help to predict the risk of aortic dissection in MFS. Based on these findings a new classification of MFS, that is benign or malignant is also proposed, which could be taken into consideration in determining the timing of prophylactic ARR

    A Computational Method for Prediction of Excretory Proteins and Application to Identification of Gastric Cancer Markers in Urine

    Get PDF
    A novel computational method for prediction of proteins excreted into urine is presented. The method is based on the identification of a list of distinguishing features between proteins found in the urine of healthy people and proteins deemed not to be urine excretory. These features are used to train a classifier to distinguish the two classes of proteins. When used in conjunction with information of which proteins are differentially expressed in diseased tissues of a specific type versus control tissues, this method can be used to predict potential urine markers for the disease. Here we report the detailed algorithm of this method and an application to identification of urine markers for gastric cancer. The performance of the trained classifier on 163 proteins was experimentally validated using antibody arrays, achieving >80% true positive rate. By applying the classifier on differentially expressed genes in gastric cancer vs normal gastric tissues, it was found that endothelial lipase (EL) was substantially suppressed in the urine samples of 21 gastric cancer patients versus 21 healthy individuals. Overall, we have demonstrated that our predictor for urine excretory proteins is highly effective and could potentially serve as a powerful tool in searches for disease biomarkers in urine in general

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore