56 research outputs found

    Development of Cheaper Embryo Vitrification Device Using the Minimum Volume Method

    Full text link
    [EN] This study was designed to compare the efficiency of the Cryotop and Calibrated plastic inoculation loop (CPIL) devices for vitrification of rabbit embryos on in vitro development and implantation rate, offspring rate at birth and embryonic and fetal losses. CPIL is a simple tool used mainly by microbiologists to retrieve an inoculum from a culture of microorganisms. In experiment 1, embryos were vitrified using a Cryotop device and a CPIL device. There were no significant differences in hatched/hatching blastocyst stage rates after 48 h of culture among the vitrified groups (62±4.7% and 62±4.9%, respectively); however, the rates were significantly lower (P<0.05) than those of the fresh group (95±3.4%). In experiment 2, vitrified embryos were transferred using laparoscopic technique. The number of implanted embryos was estimated by laparoscopy as number of implantation sites at day 14 of gestation. At birth, total offspring were recorded. Embryonic and fetal losses were calculated as the difference between implanted embryos and embryos transferred and total born at birth and implanted embryos, respectively. The rate of implantation and development to term was similar between both vitrification devices (56±7.2% and 50±6.8% for implantation rate and 40±7.1% and 35±6.5% for offspring rate at birth); but significantly lower than in the fresh group (78±6.6% for implantation rate and 70±7.2% for offspring rate at birth, P<0.05). Likewise, embryonic losses were similar between both vitrification devices (44±7.2% and 50±6.8%), but significantly higher than in the fresh group (23±6.6%, P < 0.05). However, fetal losses were similar between groups (10±4.4%, 15±4.8% and 8±4.2%, for vitrified, Cryotop or CPIL and fresh, respectively). These results indicate that the CPIL device is as effective as the Cryotop device for vitrification of rabbit embryos, but at a cost of 0.05 per device.This research was supported by the projects Spanish Research project AGL2014-53405-C2-1-P Comision Interministerial de Ciencia y Tecnologia (FMJ, JSV) and Generalitat Valenciana research program (Prometeo II 2014/036, JSV, FMJ).Marco Jiménez, F.; Jiménez Trigos, ME.; Almela-Miralles, V.; Vicente Antón, JS. (2016). Development of Cheaper Embryo Vitrification Device Using the Minimum Volume Method. PLoS ONE. 11(2):1-9. https://doi.org/10.1371/journal.pone.0148661S1911

    Chemical and structural changes of pretreated empty fruit bunch (EFB) in ionic liquid-cellulase compatible system for fermentability to bioethanol

    Get PDF
    The pretreatment of empty fruit bunch (EFB) was conducted using an integrated system of IL and cellulases (IL-E), with simultaneous fermentation in one vessel. The cellulase mixture (PKC-Cel) was derived from Trichoderma reesei by solid-state fermentation. Choline acetate [Cho]OAc was utilized for the pretreatment due to its biocompatibility and biodegradability. The treated EFB and its hydrolysate were characterized by the Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis. The results showed that there were significant structural changes in EFB after the treatment in IL-E system. The sugar yield after enzymatic hydrolysis by the PKC-Cel was increased from 0.058 g/g of EFB in the crude sample (untreated) to 0.283 and 0.62 ± 06 g/g in IL-E system after 24 and 48 h of treatment, respectively. The EFB hydrolysate showed the eligibility for ethanol production without any supplements where ethanol yield was 0.275 g ethanol/g EFB in the presence of the IL, while lower yield obtained without IL-pretreatment. Moreover, it was demonstrated that furfural and phenolic compounds were not at the level of suppressing the fermentation process

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    • 

    corecore