407 research outputs found

    D-branes, Matrix Theory and K-homology

    Get PDF
    In this paper, we study a new matrix theory based on non-BPS D-instantons in type IIA string theory and D-instanton - anti D-instanton system in type IIB string theory, which we call K-matrix theory. The theory correctly incorporates the creation and annihilation processes of D-branes. The configurations of the theory are identified with spectral triples, which are the noncommutative generalization of Riemannian geometry a la Connes, and they represent the geometry on the world-volume of higher dimensional D-branes. Remarkably, the configurations of D-branes in the K-matrix theory are naturally classified by a K-theoretical version of homology group, called K-homology. Furthermore, we argue that the K-homology correctly classifies the D-brane configurations from a geometrical point of view. We also construct the boundary states corresponding to the configurations of the K-matrix theory, and explicitly show that they represent the higher dimensional D-branes.Comment: 53 pages, corrected a few typos, version published in JHE

    Higher dimensional dust collapse with a cosmological constant

    Get PDF
    The general solution of the Einstein equation for higher dimensional (HD) spherically symmetric collapse of inhomogeneous dust in presence of a cosmological term, i.e., exact interior solutions of the Einstein field equations is presented for the HD Tolman-Bondi metrics imbedded in a de Sitter background. The solution is then matched to exterior HD Scwarschild-de Sitter. A brief discussion on the causal structure singularities and horizons is provided. It turns out that the collapse proceed in the same way as in the Minkowski background, i.e., the strong curvature naked singularities form and that the higher dimensions seem to favor black holes rather than naked singularities.Comment: 7 Pages, no figure

    Lorentz breaking Effective Field Theory and observational tests

    Full text link
    Analogue models of gravity have provided an experimentally realizable test field for our ideas on quantum field theory in curved spacetimes but they have also inspired the investigation of possible departures from exact Lorentz invariance at microscopic scales. In this role they have joined, and sometime anticipated, several quantum gravity models characterized by Lorentz breaking phenomenology. A crucial difference between these speculations and other ones associated to quantum gravity scenarios, is the possibility to carry out observational and experimental tests which have nowadays led to a broad range of constraints on departures from Lorentz invariance. We shall review here the effective field theory approach to Lorentz breaking in the matter sector, present the constraints provided by the available observations and finally discuss the implications of the persisting uncertainty on the composition of the ultra high energy cosmic rays for the constraints on the higher order, analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references adde

    The influence of individual cognitive style on performance in management education

    Get PDF
    This paper reports the outcomes of an empirical study undertaken to explore the possibility that cognitive style may be an important factor influencing performance on certain types of task in management education. Four hundred and twelve final-year undergraduate degree students studying management and business administration were tested using the Allinson-Hayes Cognitive Style Index. Their cognitive styles were then compared with assessment grades achieved for academic modules, the task categories of which were deemed to be consonant with either the wholist/intuitive or the analytic style of working. Overall ability defined by final degree grades was also tested against individuals’ cognitive styles. As expected, students whose dominant cognitive styles were analytic attained higher grades for long term solitary tasks involving careful planning and analysis of information. However, contrary to expectations, performance on tasks believed to be more suited to the wholist/intuitive style was also higher for analytic individuals, as was overall ability defined by final degree grades. The results were discussed in terms of the nature of the tasks and the need for methods of performance assessment that are independent of an orientation bias. Without this, it is argued, employment selection criteria may favour the wrong type of candidate in some circumstances

    Gravitational Collapse in Generalized Vaidya Space-Time for Lovelock Gravity Theory

    Full text link
    In this work, we have assumed the generalized Vaidya solution in Lovelock theory of gravity in (n+2)(n+2)-dimensions. It has been shown that Gauss-Bonnet gravity, dimensionally continued Lovelock gravity and pure Lovelock gravity can be constructed by suitable choice of parameters. We have investigated the occurrence of singularities formed by the gravitational collapse in above three particular forms of Lovelock theory of gravity. The dependence of the nature of singularity on the existence of radial null geodesic for Vaidya space-time has been specially considered. In all the three models, we have shown that the nature of singularities (naked singularity or black hole) completely depend on the parameters. Choices of various parameters are shown in tabular form. In Gauss-Bonnet gravity theory, it can be concluded that the possibility of naked singularity increases with increase in dimensions. In dimensionally continued Lovelock gravity, the naked singularity is possible for odd dimensions for several values of parameters. In pure Lovelock gravity, only black hole forms due to the gravitational collapse for any values of parameters. It has been shown that when accretion is taking place on a collapsing object, it is highly unlikely to get a black hole. Finally on considering the phantom era in the expanding universe it is observed that there is no possibility of formation of a black hole if we are in the Gauss-Bonnet gravity considering the accreting procedure upon a collapsing object.Comment: 11 page

    The Physics of Star Cluster Formation and Evolution

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio

    (Anti-)deuteron production in pp collisions at 1as=13TeV

    Get PDF
    The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at s=13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (d Nch/ d \u3b7 3c 26) as measured in p\u2013Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p\u2013Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM)

    Multiplicity dependence of inclusive J/psi production at midrapidity in pp collisions at root s=13 TeV

    Get PDF
    Measurements of the inclusive J/psi yield as a function of charged-particle pseudorapidity density dN(ch)/d eta in pp collisions at root s = 13 TeV with ALICE at the LHC are reported. The J/psi meson yield is measured at midrapidity (vertical bar y vertical bar <0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (vertical bar eta vertical bar <1) and at forward rapidity (-3.7 <eta <-1.7 and 2.8 <eta <5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/psi yield with normalized dN(ch)/d eta is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively. (C) 2020 European Organization for Nuclear Research. Published by Elsevier B.V.Peer reviewe
    corecore