45 research outputs found

    LUF7244 plus Dofetilide Rescues Aberrant Kv11.1 Trafficking and Produces Functional IKv11.1

    Get PDF
    Kv11.1 (hERG) channels play a critical role in repolarization of cardiomyocytes during the cardiac action potential (AP). Drug mediated Kv11.1 blockade results in AP prolongation, which poses an increased risk of sudden cardiac death. Many drugs, like pentamidine, interfere with normal Kv11.1 forward trafficking and thus reduce functional Kv11.1 channel densities. Although class III antiarrhythmics, e.g. dofetilide, rescue congenital and acquired forward trafficking defects, this is of little use due to their simultaneous acute channel blocking effect. We aimed to test the ability of a combination of dofetilide plus LUF7244, a Kv11.1 allosteric modulator/activator, to rescue Kv11.1 trafficking and produce functional Kv11.1 current. LUF7244 treatment by itself did not disturb or rescue WT or G601S Kv11.1 trafficking as shown by western blot and immunofluorescence microcopy analysis. Pentamidine-decreased maturation of WT Kv11.1 levels was rescued by 10 μM dofetilide or 10 μM dofetilide + 5 μM LUF7244. In trafficking defective G601S Kv11.1 cells, dofetilide (10 μM) or dofetilide+LUF7244 (10+5 μM) restored Kv11.1 trafficking also, as demonstrated by western blot and immunofluorescence microscopy. LUF7244 (10 μM) increased IKv11.1 despite the presence of dofetilide (1 μM) in WT Kv11.1 cells. In G601S expressing cells, long-term treatment (24-48 h) with LUF7244 (10 μM) and dofetilide (1 μM) increased IKv11.1 compared to non-treated, or acutely treated cells. We conclude that dofetilide plus LUF7244 rescues Kv11.1 trafficking and produces functional IKv11.1. Thus, combined administration of LUF7244 and an IKV11.1 trafficking corrector could serve as a new pharmacological therapy of both congenital and drug-induced Kv11.1 trafficking defects.Toxicolog

    A selective ATP-binding cassette subfamily G member 2 efflux inhibitor revealed via high-throughput flow cytometry

    Get PDF
    Chemotherapeutics tumor resistance is a principal reason for treatment failure, and clinical and experimental data indicate that multidrug transporters such as ATP-binding cassette (ABC) B1 and ABCG2 play a leading role by preventing cytotoxic intracellular drug concentrations. Functional efflux inhibition of existing chemotherapeutics by these pumps continues to present a promising approach for treatment. A contributing factor to the failure of existing inhibitors in clinical applications is limited understanding of specific substrate/inhibitor/pump interactions. We have identified selective efflux inhibitors by profiling multiple ABC transporters against a library of small molecules to find molecular probes to further explore such interactions. In our primary screening protocol using JC-1 as a dual-pump fluorescent reporter substrate, we identified a piperazine-substituted pyrazolo[1,5-a]pyrimidine substructure with promise for selective efflux inhibition. As a result of a focused structure-activity relationship (SAR)-driven chemistry effort, we describe compound 1 (CID44640177), an efflux inhibitor with selectivity toward ABCG2 over ABCB1. Compound 1 is also shown to potentiate the activity of mitoxantrone in vitro as well as preliminarily in vivo in an ABCG2-overexpressing tumor model. At least two analogues significantly reduce tumor size in combination with the chemotherapeutic topotecan. To our knowledge, low nanomolar chemoreversal activity coupled with direct evidence of efflux inhibition for ABCG2 is unprecedented

    Measurement of CPCP asymmetries in D±→η′π±D^{\pm}\rightarrow \eta^{\prime} \pi^{\pm} and Ds±→η′π±D_s^{\pm}\rightarrow \eta^{\prime} \pi^{\pm} decays

    Get PDF
    See paper for full list of authors - All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-041.html - Submitted to Phys. Lett. BInternational audienceA search for CP violation in D±→η′π± and D±s→η′π± decays is performed using proton-proton collision data, corresponding to an integrated luminosity of 3 fb−1, recorded by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The measured CP-violating charge asymmetries are ACP(D±→η′π±)=(−0.61±0.72±0.55±0.12)% and ACP(D±s→η′π±)=(−0.82±0.36±0.24±0.27)%, where the first uncertainties are statistical, the second systematic, and the third are the uncertainties on the ACP(D±→K0Sπ±) and ACP(D±s→ϕπ±) measurements used for calibration. The results represent the most precise measurements of these asymmetries to date

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Improved mechanical and corrosion properties of nickel composite coatings by incorporation of layered silicates

    No full text
    Layered silicates as exfoliated montmorillonite are incorporated into nickel films by electrodeposition, enhancing both corrosion resistance and hardness. Films were deposited onto stainless steel from a plating solution adjusted to pH 9 containing nickel sulfate, sodium citrate, and various concentrations of exfoliated montmorillonite. The presence of the incorporated layered silicate was confirmed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The composite films were also compact and smooth like the pure nickel films deposited under the same conditions as shown by scanning electron microscopy. X-ray diffraction results showed that incorporation of layered silicates into the film do not affect the nickel crystalline fcc structure. The nanocomposite films exhibited improved stability and adhesion. Pure nickel films cracked and peeled from the substrate when immersed in 3.5% NaCl solution within 5 days, while the nanocomposite films remained attached even after 25 days. The corrosion resistance of the nickel nanocomposites was also improved compared to nickel films. Nickel-layered silicate composites showed a 25% increase in Young's modulus and a 20% increase in hardness over pure nickel films.NPRP grant 4-306-2-111 from the Qatar National Research Fund (A Member of The Qatar Foundation).Scopu
    corecore