1,222 research outputs found
Probing Top Anomalous Couplings at the Tevatron and the Large Hadron Collider
Chromomagnetic and chromoelectric dipole interactions of the top quark are
studied in a model independent framework. Limits are set on the scale of new
physics that might lead to such contributions using available Tevatron data.
Prospects at the LHC are reviewed.Comment: Version published in Praman
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s) = 1.96 TeV
We present a measurement of the top quark pair production cross section in
ppbar collisions at sqrt(s)=1.96 TeV using 318 pb^{-1} of data collected with
the Collider Detector at Fermilab. We select ttbar decays into the final states
e nu + jets and mu nu + jets, in which at least one b quark from the t-quark
decays is identified using a secondary vertex-finding algorithm. Assuming a top
quark mass of 178 GeV/c^2, we measure a cross section of 8.7 +-0.9 (stat)
+1.1-0.9 (syst) pb. We also report the first observation of ttbar with
significance greater than 5 sigma in the subsample in which both b quarks are
identified, corresponding to a cross section of 10.1 +1.6-1.4(stat)+2.0-1.3
(syst) pb.Comment: Accepted for publication in Physics Review Letters, 7 page
Observation of ZZ production in ppbar collisions at sqrt(s) = 1.96 TeV
We present an observation for ZZ -> l+l-l'+l'- (l, l' = e or mu) production
in ppbar collisions at a center-of-mass energy of sqrt(s) = 1.96 TeV. Using 1.7
fb-1 of data collected by the D0 experiment at the Fermilab Tevatron Collider,
we observe three candidate events with an expected background of 0.14 +0.03
-0.02 events. The significance of this observation is 5.3 standard deviations.
The combination of D0 results in this channel, as well as in ZZ -> l+l-nunubar,
yields a significance of 5.7 standard deviations and a combined cross section
of sigma(ZZ) = 1.60 +/- 0.63 (stat.) +0.16 -0.17 (syst.) pb.Comment: 7 pages, 1 figure, 2 tables Modified slightly following review
proces
A search for the standard model Higgs boson in the missing energy and acoplanar b-jet topology at sqrt(s) = 1.96 TeV
We report a search for the standard model Higgs boson in the missing energy
and acoplanar b-jet topology, using an integrated luminosity of 0.93 inverse
femtobarn recorded by the D0 detector at the Fermilab Tevatron Collider. The
analysis includes signal contributions from pp->ZH->nu nu b b, as well as from
WH production in which the charged lepton from the W boson decay is undetected.
Neural networks are used to separate signal from background. In the absence of
a signal, we set limits on the cross section of pp->VH times the branching
ratio of H->bb at the 95% C.L. of 2.6 - 2.3 pb, for Higgs boson masses in the
range 105 - 135 GeV, where V=W,Z. The corresponding expected limits range from
2.8 pb - 2.0 pb.Comment: Submitted to Phys. Rev. Letter
Measurement of the lifetime of the B_c meson in the semileptonic decay channel
Using approximately 1.3 fb-1 of data collected by the D0 detector between
2002 and 2006, we measure the lifetime of the B_c meson in the B_c -> J/psi mu
nu X final state. A simultaneous unbinned likelihood fit to the J/\psi+mu
invariant mass and lifetime distributions yields a signal of 881 +/- 80 (stat)
candidates and a lifetime measurement of \tau(B_c) = 0.448 +0.038 -0.036 (stat)
+/- 0.032 (syst) ps.Comment: 7 pages, 2 figures, submitted to Phys. Rev. Let
b-Jet Identification in the D0 Experiment
Algorithms distinguishing jets originating from b quarks from other jet
flavors are important tools in the physics program of the D0 experiment at the
Fermilab Tevatron p-pbar collider. This article describes the methods that have
been used to identify b-quark jets, exploiting in particular the long lifetimes
of b-flavored hadrons, and the calibration of the performance of these
algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research
Measurement of the W boson mass
We present a measurement of the W boson mass in W -> ev decays using 1 fb^-1
of data collected with the D0 detector during Run II of the Fermilab Tevatron
collider. With a sample of 499830 W -> ev candidate events, we measure M_W =
80.401 +- 0.043 GeV. This is the most precise measurement from a single
experiment.Comment: As published in PR
Search for the standard model Higgs boson in tau final states
We present a search for the standard model Higgs boson using hadronically
decaying tau leptons, in 1 inverse femtobarn of data collected with the D0
detector at the Fermilab Tevatron ppbar collider. We select two final states:
tau plus missing transverse energy and b jets, and tau+ tau- plus jets. These
final states are sensitive to a combination of associated W/Z boson plus Higgs
boson, vector boson fusion and gluon-gluon fusion production processes. The
observed ratio of the combined limit on the Higgs production cross section at
the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of
115 GeV.Comment: publication versio
Double parton interactions in photon+3 jet events in ppbar collisions sqrt{s}=1.96 TeV
We have used a sample of photon+3 jets events collected by the D0 experiment
with an integrated luminosity of about 1 fb^-1 to determine the fraction of
events with double parton scattering (f_DP) in a single ppbar collision at
sqrt{s}=1.96 TeV. The DP fraction and effective cross section (sigma_eff), a
process-independent scale parameter related to the parton density inside the
nucleon, are measured in three intervals of the second (ordered in pT) jet
transverse momentum pT_jet2 within the range 15 < pT_jet2 < 30 GeV. In this
range, f_DP varies between 0.23 < f_DP < 0.47, while sigma_eff has the average
value sigma_eff_ave = 16.4 +- 0.3(stat) +- 2.3(syst) mb.Comment: 15 pages, 13 figure
Precise measurement of the top quark mass from lepton+jets events at D0
We measure the mass of the top quark using top quark pair candidate events in
the lepton+jets channel from data corresponding to 1 fb-1 of integrated
luminosity collected by the D0 experiment at the Fermilab Tevatron collider. We
use a likelihood technique that reduces the jet energy scale uncertainty by
combining an in-situ jet energy calibration with the independent constraint on
the jet energy scale (JES) from the calibration derived using photon+jets and
dijet samples. We find the mass of the top quark to be
171.5+-1.8(stat.+JES)+-1.1(syst.) GeV.Comment: submitted to Phys. Rev. Letter
- …
