160 research outputs found

    Depletion forces near a soft surface

    Full text link
    We investigate excluded-volume effects in a bidisperse colloidal suspension near a flexible interface. Inspired by a recent experiment by Dinsmore et al. (Phys. Rev, Lett. 80, 409 (1998)), we study the adsorption of a mesoscopic bead on the surface and show that depletion forces could in principle lead to particle encapsulation. We then consider the effect of surface fluctuations on the depletion potential itself and construct the density profile of a polymer solution near a soft interface. Surprisingly we find that the chains accumulate at the wall, whereas the density displays a deficit of particles at distances larger than the surface roughness. This non-monotonic behavior demonstrates that surface fluctuations can have major repercusions on the properties of a colloidal solution. On average, the additional contribution to the Gibbs adsorbance is negative. The amplitude of the depletion potential between a mesoscopic bead and the surface increases accordingly.Comment: 10 pages, 5 figure

    Effect of complementary food with small amounts of freshwater fish on whole blood n-3 fatty acids in Cambodian infants age 6-15 months

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.plefa.2018.07.002”. © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The impact of freshwater fish consumption on the status of long-chain n-3 fatty acids (n-3 LCPUFA) in infants in landlocked, low-income populations is unknown. We used secondary data from a randomized, single-blinded, controlled trial to evaluate the impact of daily consumption of complementary food products with small amounts of freshwater fish on whole blood n-3 LCPUFA in Cambodian infants. Infants (n=419), received daily, one of four food products for 9 months. Two products contained freshwater fish: WinFood (10% fish by dry weight) and WinFood-L (12% fish by dry weight), while two products were non-fish-based: corn-soy blends (CSB+ and CSB++). Whole blood fatty acids and breastfeeding status were assessed at baseline and endline of the intervention. The WinFood products contributed to an estimated maximum intake of 86.5 mg/day n-3 LCPUFA. There was no difference in whole blood n-3 LCPUFA among the four intervention groups or between the fish-based and the non-fish-based groups (p≥0.142). At endline, 71% of the children were still breastfed. Interaction analyses indicated a lower ratio of n-6/n-3 PUFA in non-breastfed infants in the WinFood groups compared to the CSB groups (pinteraction=0.026). Thus, a high intake of n-3 LCPUFA from breastmilk may have blurred a potential impact of small amounts of freshwater fish effect on n-3 LCPUFA status in Cambodian infants.Danida || 57-08-LIFEEuropean Commission || SMILING Project 289616Institut de Recherche pour le DéveloppementUniversity of CopenhagenCanada Research Chair in Nutritional LipidomicsWorld Food Programm

    A Survey on the Krein-von Neumann Extension, the corresponding Abstract Buckling Problem, and Weyl-Type Spectral Asymptotics for Perturbed Krein Laplacians in Nonsmooth Domains

    Full text link
    In the first (and abstract) part of this survey we prove the unitary equivalence of the inverse of the Krein--von Neumann extension (on the orthogonal complement of its kernel) of a densely defined, closed, strictly positive operator, SεIHS\geq \varepsilon I_{\mathcal{H}} for some ε>0\varepsilon >0 in a Hilbert space H\mathcal{H} to an abstract buckling problem operator. This establishes the Krein extension as a natural object in elasticity theory (in analogy to the Friedrichs extension, which found natural applications in quantum mechanics, elasticity, etc.). In the second, and principal part of this survey, we study spectral properties for HK,ΩH_{K,\Omega}, the Krein--von Neumann extension of the perturbed Laplacian Δ+V-\Delta+V (in short, the perturbed Krein Laplacian) defined on C0(Ω)C^\infty_0(\Omega), where VV is measurable, bounded and nonnegative, in a bounded open set ΩRn\Omega\subset\mathbb{R}^n belonging to a class of nonsmooth domains which contains all convex domains, along with all domains of class C1,rC^{1,r}, r>1/2r>1/2.Comment: 68 pages. arXiv admin note: extreme text overlap with arXiv:0907.144

    Stunting, wasting and breast-feeding as correlates of body composition in Cambodian children at 6 and 15 months of age

    Get PDF
    AbstractThe study aimed at assessing stunting, wasting and breast-feeding as correlates of body composition in Cambodian children. As part of a nutrition trial (ISRCTN19918531), fat mass (FM) and fat-free mass (FFM) were measured using2H dilution at 6 and 15 months of age. Of 419 infants enrolled, 98 % were breastfed, 15 % stunted and 4 % wasted at 6 months. At 15 months, 78 % were breastfed, 24 % stunted and 11 % wasted. Those not breastfed had lower FMI at 6 months but not at 15 months. Stunted children had lower FM at 6 months and lower FFM at 6 and 15 months compared with children with length-for-agez≥0. Stunting was not associated with height-adjusted indexes fat mass index (FMI) or fat-free mass index (FFMI). Wasted children had lower FM, FFM, FMI and FFMI at 6 and 15 months compared with children with weight-for-lengthz(WLZ) ≥0. Generally, FFM and FFMI deficits increased with age, whereas FM and FMI deficits decreased, reflecting interactions between age and WLZ. For example, the FFM deficits were –0·99 (95 % CI –1·26, –0·72) kg at 6 months and –1·44 (95 % CI –1·69; –1·19) kg at 15 months (interaction,P&lt;0·05), while the FMI deficits were –2·12 (95 % CI –2·53, –1·72) kg/m2at 6 months and –1·32 (95 % CI –1·77, –0·87) kg/m2at 15 months (interaction,P&lt;0·05). This indicates that undernourished children preserve body fat at the detriment of fat-free tissue, which may have long-term consequences for health and working capacity.</jats:p

    Stunting, wasting and breast-feeding as correlates of body composition in Cambodian children at 6 and 15 months of age

    Get PDF
    AbstractThe study aimed at assessing stunting, wasting and breast-feeding as correlates of body composition in Cambodian children. As part of a nutrition trial (ISRCTN19918531), fat mass (FM) and fat-free mass (FFM) were measured using2H dilution at 6 and 15 months of age. Of 419 infants enrolled, 98 % were breastfed, 15 % stunted and 4 % wasted at 6 months. At 15 months, 78 % were breastfed, 24 % stunted and 11 % wasted. Those not breastfed had lower FMI at 6 months but not at 15 months. Stunted children had lower FM at 6 months and lower FFM at 6 and 15 months compared with children with length-for-agez≥0. Stunting was not associated with height-adjusted indexes fat mass index (FMI) or fat-free mass index (FFMI). Wasted children had lower FM, FFM, FMI and FFMI at 6 and 15 months compared with children with weight-for-lengthz(WLZ) ≥0. Generally, FFM and FFMI deficits increased with age, whereas FM and FMI deficits decreased, reflecting interactions between age and WLZ. For example, the FFM deficits were –0·99 (95 % CI –1·26, –0·72) kg at 6 months and –1·44 (95 % CI –1·69; –1·19) kg at 15 months (interaction,P&lt;0·05), while the FMI deficits were –2·12 (95 % CI –2·53, –1·72) kg/m2at 6 months and –1·32 (95 % CI –1·77, –0·87) kg/m2at 15 months (interaction,P&lt;0·05). This indicates that undernourished children preserve body fat at the detriment of fat-free tissue, which may have long-term consequences for health and working capacity.</jats:p

    DAAM is required for thin filament formation and Sarcomerogenesis during muscle development in Drosophila.

    Get PDF
    During muscle development, myosin and actin containing filaments assemble into the highly organized sarcomeric structure critical for muscle function. Although sarcomerogenesis clearly involves the de novo formation of actin filaments, this process remained poorly understood. Here we show that mouse and Drosophila members of the DAAM formin family are sarcomere-associated actin assembly factors enriched at the Z-disc and M-band. Analysis of dDAAM mutants revealed a pivotal role in myofibrillogenesis of larval somatic muscles, indirect flight muscles and the heart. We found that loss of dDAAM function results in multiple defects in sarcomere development including thin and thick filament disorganization, Z-disc and M-band formation, and a near complete absence of the myofibrillar lattice. Collectively, our data suggest that dDAAM is required for the initial assembly of thin filaments, and subsequently it promotes filament elongation by assembling short actin polymers that anneal to the pointed end of the growing filaments, and by antagonizing the capping protein Tropomodulin

    Measures in Visualization Space

    Get PDF
    Postponed access: the file will be available after 2021-08-12Measurement is an integral part of modern science, providing the fundamental means for evaluation, comparison, and prediction. In the context of visualization, several different types of measures have been proposed, ranging from approaches that evaluate particular aspects of visualization techniques, their perceptual characteristics, and even economic factors. Furthermore, there are approaches that attempt to provide means for measuring general properties of the visualization process as a whole. Measures can be quantitative or qualitative, and one of the primary goals is to provide objective means for reasoning about visualizations and their effectiveness. As such, they play a central role in the development of scientific theories for visualization. In this chapter, we provide an overview of the current state of the art, survey and classify different types of visualization measures, characterize their strengths and drawbacks, and provide an outline of open challenges for future research.acceptedVersio

    UNC-45a promotes myosin folding and stress fiber assembly

    Get PDF
    Contractile actomyosin bundles, stress fibers, are crucial for adhesion, morphogenesis, and mechanosensing in nonmuscle cells. However, the mechanisms by which nonmuscle myosin II (NM-II) is recruited to those structures and assembled into functional bipolar filaments have remained elusive. We report that UNC-45a is a dynamic component of actin stress fibers and functions as a myosin chaperone in vivo. UNC-45a knockout cells display severe defects in stress fiber assembly and consequent abnormalities in cell morphogenesis, polarity, and migration. Experiments combining structured-illumination microscopy, gradient centrifugation, and proteasome inhibition approaches revealed that a large fraction of NM-II and myosin-1c molecules fail to fold in the absence of UNC-45a. The remaining properly folded NM-II molecules display defects in forming functional bipolar filaments. The C-terminal UNC-45/Cro1/She4p domain of UNC-45a is critical for NM-II folding, whereas the N-terminal tetratricopeptide repeat domain contributes to the assembly of functional stress fibers. Thus, UNC-45a promotes generation of contractile actomyosin bundles through synchronized NM-II folding and filament-assembly activities.Peer reviewe

    Coupling changes in cell shape to chromosome segregation

    Get PDF
    Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell–substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance

    Postnatal Development of Numbers and Mean Sizes of Pancreatic Islets and Beta-Cells in Healthy Mice and GIPRdn Transgenic Diabetic Mice

    Get PDF
    The aim of this study was to examine postnatal islet and beta-cell expansion in healthy female control mice and its disturbances in diabetic GIPRdn transgenic mice, which exhibit an early reduction of beta-cell mass. Pancreata of female control and GIPRdn transgenic mice, aged 10, 45, 90 and 180 days were examined, using state-of-the-art quantitative-stereological methods. Total islet and beta-cell volumes, as well as their absolute numbers increased significantly until 90 days in control mice, and remained stable thereafter. The mean islet volumes of controls also increased slightly but significantly between 10 and 45 days of age, and then remained stable until 180 days. The total volume of isolated beta-cells, an indicator of islet neogenesis, and the number of proliferating (BrdU-positive) islet cells were highest in 10-day-old controls and declined significantly between 10 and 45 days. In GIPRdn transgenic mice, the numbers of islets and beta-cells were significantly reduced from 10 days of age onwards vs. controls, and no postnatal expansion of total islet and beta-cell volumes occurred due to a reduction in islet neogenesis whereas early islet-cell proliferation and apoptosis were unchanged as compared to control mice. Insulin secretion in response to pharmacological doses of GIP was preserved in GIPRdn transgenic mice, and serum insulin to pancreatic insulin content in response to GLP-1 and arginine was significantly higher in GIPRdn transgenic mice vs. controls. We could show that the increase in islet number is mainly responsible for expansion of islet and beta-cell mass in healthy control mice. GIPRdn transgenic mice show a disturbed expansion of the endocrine pancreas, due to perturbed islet neogenesis
    corecore