

Skau, Jutta KH; Grenov, Benedikte; Chamnan, Chhoun; Mary, Chea; Wieringa, Frank T; Dijkhuizen, Marjoleine A; Ritz, Christian; Wells, Jonathan C; Berger, Jacques; Filteau, Suzanne; Roos, Nanna; Michaelsen, Kim F; Friis, Henrik (2019) Stunting, wasting and breastfeeding as correlates of body composition in Cambodian children at 6 and 15 months of age. British Journal of Nutrition. ISSN 0007-1145 DOI: https://doi.org/10.1017/S0007114518003884

Downloaded from: http://researchonline.lshtm.ac.uk/4650716/

DOI: 10.1017/S0007114518003884

Usage Guidelines

 $Please \ refer \ to \ usage \ guidelines \ at \ http://researchonline.lshtm.ac.uk/policies.html \ or \ alternatively \ contact \ researchonline@lshtm.ac.uk.$ 

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/

# Stunting, wasting and breastfeeding as correlates of body composition in Cambodian children at 6 and 15 months of age

| Journal:                      | British Journal of Nutrition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                 | BJN-RA-18-0589.R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Manuscript Type:              | Research Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Date Submitted by the Author: | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Complete List of Authors:     | Skau, Jutta ; University of Copenhagen, Department of Nutrition Exercise<br>and Sports<br>Grenov, Benedikte; University of Copenhagen, Department of Nutrition<br>Exercise and Sports<br>Chhoun, Chamnan ; Fishery Administration, Ministry of Agriculture,<br>Forestry and Fisheries, Department of Fisheries Post-harvest<br>Technologies and Quality Control<br>Chea, Mary; National Nutrition Programme, Phnom Penh, Cambodia,<br>National Nutrition Programme, National Maternal and Child Health<br>Centre, Ministry of Health<br>Wieringa, Frank; IRD UMR204: Prevention of Malnutrition, Institut de<br>Recherche pour le Développement (IRD), UMR 204 NutriPass<br>IRD/University of Montpellier/SupAgro<br>Dijkhuizen, Marjoleine; IRD/University of Montpellier, Institut de<br>Recherche pour le Développement (IRD), UMR 204 NutriPass<br>IRD/University of Montpellier/SupAgro, Montpellier, France<br>Ritz, Christian; University of Copenhagen, Fac. of Science, Dept. of<br>Paediatric and International Nutrition; University of Copenhagen, Fac. of<br>Science, Dept. of Paediatric and International Nutrition<br>Wells, Jonathan; University College London, ICH: Inst. of Child Health<br>Berger, Jacques; IRD: Inst. for Research & Development, 4Institut de<br>Recherche pour le Développement (IRD), UMR 204 NutriPass<br>IRD/University of Montpellier/SupAgro<br>Filteau, Suzanne; LSHTM: London School of Hygiene & Tropical Medicine,<br>Epidemiology & Population Health<br>Roos, Nanna; University of Copenhagen, Department of Exercise and<br>Sports<br>Michaelsen, Kim; University of Copenhagen, Dept. of Nutrition, Exercise<br>& Sports<br>Friis, Henrik; University of Copenhagen, Nutrition, Exercise & Sports |
| Keywords:                     | body composition, fat-free mass, fat mass, infancy, childhood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Subject Category:             | Human and Clinical Nutrition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

### SCHOLARONE<sup>™</sup> Manuscripts

## Stunting, wasting and breastfeeding as correlates of body composition in Cambodian children at 6 and 15 months of age

Jutta K H Skau<sup>1\*</sup>, Benedikte Grenov<sup>1\*†</sup>, Chhoun Chamnan<sup>2</sup>, Chea Mary<sup>3</sup>, Frank T Wieringa<sup>4</sup>, Marjoleine A Dijkhuizen<sup>4</sup>, Christian Ritz<sup>1</sup>, Jonathan C Wells<sup>5</sup>, Jacques Berger<sup>4</sup>, Suzanne Filteau<sup>6</sup>, Nanna Roos<sup>1</sup>, Kim F Michaelsen<sup>1</sup> and Henrik Friis<sup>1</sup>

<sup>1</sup>Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; <sup>2</sup>Department of Fisheries Post-harvest Technologies and Quality Control, Fishery Administration, Ministry of Agriculture, Forestry and Fisheries, #186 Preah Norodam Boulevard, Phnom Penh Cambodia; <sup>3</sup>National Nutrition Programme, National Maternal and Child Health Centre, Ministry of Health, #31A Rue de France (St. 47), Phnom Penh, Cambodia;<sup>4</sup>Institut de Recherche pour le Développement (IRD), UMR 204 NutriPass IRD/University of Montpellier/SupAgro, Montpellier, France; <sup>5</sup>Childhood Nutrition Research Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; <sup>6</sup>Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK

\*Shared first authorship between Jutta KH Skau and Benedikte Grenov

<sup>†</sup>Corresponding author: Benedikte Grenov, Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark, Phone: +4535331468, Fax: +4535320870, Email: bgr@nexs.ku.dk

Skau; Grenov; Chamnan; Chea; Wieringa; Dijkhuizen; Ritz, Wells; Berger; Filteau; Roos; Michaelsen and Friis

Word count: 4529 (main manuscript introduction through conclusion)

Figures to print: 1 Tables to print: 3 Online supporting material: 3 tables

Short title: Early stunting, wasting and body composition

Footnotes to the title:

- i) The "Online Supporting Material" is available from the link in the online posting of the article and from the same link in the online table contents at http://jn.nutrition.org.
- Abbreviations: CDHS, Cambodian Demographic Health Survey; FM, fat mass; FFM, fat-free mass; FMI, fat mass index; FFMI, fat-free mass index; FM%, percentage fat mass; IAEA, International Atomic Energy Agency; LAZ, length-for-age z-score; SAM, severe acute malnutrition; TBW, total body water; WLZ, weight-for-length z-score.

Jy v

#### 1 Abstract

The study aimed at assessing stunting and wasting as correlates of body composition in Cambodian 2 children. As part of a nutrition trial (ISRCTN19918531), fat (FM) and fat-free mass (FFM) were 3 measured using <sup>2</sup>H dilution at 6 and 15 months of age. Linear mixed-effects models were used to 4 assess associations of stunting, wasting, sex and breastfeeding with FM and FFM and height-adjusted 5 indexes FMI and FFMI. Of 419 infants enrolled, 98% were breastfed, 15% stunted and 4% wasted at 6 6 months. At 15 months, 78% were breastfed, 24% stunted and 11% wasted. Those not breastfed had 7 8 lower FMI at 6 months (-1.22; 95% CI -2.05;-0.39) but not at 15 months (-0.23, -0.51; 0.051). Stunted 9 children had lower FM at 6 months and lower FFM at 6 and 15 months compared to children with length-for-age  $\geq 0$  Z. Stunting was not associated with FMI or FFMI. Wasted children had lower FM, 10 FFM, FMI and FFMI at 6 and 15 months compared to children with weight-for-length Z (WLZ)  $\geq 0$ . 11 Generally, FFM and FFMI deficits increased with age, whereas FM and FMI deficits decreased, 12 reflecting interactions between age and WLZ. For example, the FFM deficits were -0.99 (-1.26;-0.72) 13 kg at 6 months, and -1.44 (-1.69; -1.19) kg at 15 months (interaction, p<0.05), while the FMI deficits 14 were -2.12 (-2.53;-1.72) kg/m<sup>2</sup> at 6 months and -1.32 (-1.77;-0.87) kg/m<sup>2</sup> at 15 months (interaction, 15 p<0.05). This indicates that undernourished children preserve body fat at the detriment of fat-free 16 tissue, which may have long-term consequences for health and working capacity. 17

18 Keywords: Body composition, fat-free mass, fat mass, infancy, childhood, breastfeeding, stunting,

19 wasting

4

#### 20 Introduction

The period from conception to 24 months of age (first 1000 days) represents a window of opportunity for nutritional interventions promoting healthy growth <sup>(1,2)</sup>. In order to design interventions that prevent growth faltering and support health in low- and middle-income settings, it is important to understand the associations between nutritional status, mode of feeding and body composition in early life.

26 While anthropometric markers of growth (weight, height, mid-upper arm circumference (MUAC)) are widely used, few studies are able to differentiate the accretion of fat mass (FM) versus fat-free 27 28 mass (FFM). FFM accretion indexes development of organ and muscle tissue, and infancy represents a critical period in this context, as the structure and function of organs and tissues is strongly 29 contingent on the magnitude of hyperplastic growth. A study from Ethiopia, using air-displacement 30 plethysmography to measure body composition from birth to 6 months, found low birth weight to be 31 associated with low FFM at birth. A large variation in fat accretion was observed during the first 6 32 months <sup>(3,4)</sup>. Follow-up of the same cohort showed positive correlations between FFM at birth and 33 height and child development at 2 years of age <sup>(5,6)</sup>. In general, greater weight gain in infancy is 34 associated with greater adult height and FFM, whereas from early childhood, greater weight gain is 35 primarily associated with greater adult FM <sup>(7,8)</sup>. Muscle mass may potentially contribute both to 36 immediate survival <sup>(9)</sup>, as well as to long-term cardio-metabolic health <sup>(10)</sup>. 37

The accretion of fat may also be important for short-term survival of children. A cross-sectional study reported that 3-18 months old Gambian infants overall had less FFM and FM than UK infants as measured by the <sup>2</sup>H dilution technique. However, whereas the reduction in FFM of Gambian vs UK children increased with age, the FM difference decreased with age, suggesting that growth faltering affects FFM more than adiposity <sup>(11)</sup>. In line with this, a study from Uganda found low levels of leptin, indicative of low FM, to be a predictor of mortality in children hospitalized with severe acute malnutrition (SAM) <sup>(12)</sup>.

The influence of breastfeeding on body composition has mainly been studied in high-income countries. A meta-analysis showed that breastfed infants accumulated more fat than formula-fed infants did during the first 8-9 months. However, at 12 months, formula-fed infants had a higher FM than breastfed infants <sup>(13)</sup>. There is also an increasing number of studies showing that the composition of breastmilk has an effect on body composition in the infant, and thereby suggesting mechanisms

5

for an effect on growth <sup>(14)</sup>. Differences in dietary protein content and quality are also suggested to
play a role in the effects on early growth via stimulation of IGF-1 and insulin <sup>(15)</sup>.

In Cambodia, the prevalence of undernutrition among pre-school children has remained largely 52 unchanged for the past 10 years. The 2014 Cambodian Demographic and Health Survey (CDHS) 53 concluded that 32% of children under 5 years of age are stunted; 24% are underweight and 10% are 54 wasted <sup>(16)</sup>. Thus, Cambodia still has an urgent need to prevent undernutrition in pre-school children. 55 The main objective of this paper was to assess the role of stunting, wasting and breastfeeding as 56 mbo. ,, wasting a. correlates of FFM and FM in Cambodian children at the ages of 6 and 15 months. The hypothesis 57 was that associations of stunting, wasting and breastfeeding with body composition changes with age. 58

Cambridge University Press

#### 59 Methods

Study design and ethics. This longitudinal study was nested in a randomized trial investigating the 60 effect of four nutrition interventions on prevention of malnutrition (the WinFood study, 61 ISRCTN19918531 http://www.isrctn.com/ISRCTN19918531)<sup>(17)</sup>. Children 62 received the interventions from 6 to 15 months of age. The aim of the current study was to assess stunting, wasting 63 and breastfeeding as correlates of body composition, and to test if such associations change with age. 64 The four intervention groups were merged for this study and statistical analyses were adjusted for the 65 interventions, as described below. The study was conducted according to the guidelines laid down in 66 the Declaration of Helsinki and all procedures involving human subjects were approved by the 67 68 National Ethics Committee for Health Research, Ministry of Health, the Royal Government of Cambodia (151 NEHR) and a consultative approval was obtained from the National Committee of 69 70 Health Research Ethics in Denmark. Written informed consent was obtained from all caregivers of participating infants and the caregivers were informed that their child could leave the study whenever 71 72 they wanted to.

*Study site*. The study was conducted from March 2011 to March 2012 in seven rural municipalities located in two Operational Districts (PeaReang and Sithor Kandal) in the Prey Veng province, southeast of Phnom Penh. Prey Veng is agricultural low-land, bordering the Mekong River and recognized to be vulnerable to food insecurity. Prevalence of stunting and wasting was similar to the national level.

Study subjects. All parents of single-born infants were given an invitation for their child to participate 78 79 in the WinFood study if their child was born between 15 August and 15 December 2010. Children were recruited when they had reached the age of approximately 5.5 months. On the day of 80 recruitment, infants were seen by a paediatrician and screened for severe wasting (weight-for-length 81 z-score (WLZ) <-3), pitting oedema, clinical signs of vitamin A deficiency or anaemia (Hb< 80 g/L). 82 83 If any of these signs were found, the infant was excluded and referred for treatment. Infants with a history of acute or persistent diarrhoea at recruitment were also given a treatment referral and invited 84 for a new screening 2 to 4 weeks later. All infants were assessed on the recruitment day (a "6-month 85 visit") and 9 months later at a "15-month visit". 86

*Body composition*. Body composition was assessed using the <sup>2</sup>H dilution technique to measure total
body water (TBW), and hence FFM and FM, following the protocol developed by the International

Atomic Energy Agency (IAEA) <sup>(18)</sup>. Each infant was given an accurately weighed oral dose of 7 g <sup>2</sup>H 89 oxide (99.8% <sup>2</sup>H<sub>2</sub>O) (Cambridge Isotope Laboratories Inc., USA), which was kept at 4°C until use. 90 The <sup>2</sup>*H kit* consisted of a pre-weighed <sup>2</sup>H<sub>2</sub>O dose in a 5 ml tube, a 10 ml syringe and a needle to draw 91 the  ${}^{2}\text{H}_{2}\text{O}$  from the tube to the syringe. The weight of the  ${}^{2}H$  kit prior to dosing was recorded to the 92 nearest 0.01 g. Furthermore, two pre-weighed paper towels were used to absorb any spilled <sup>2</sup>H<sub>2</sub>O. 93 With the 10 ml syringe, the <sup>2</sup>H<sub>2</sub>O dose was administered by one of the authors (JKHS) to the child 94 while it was sitting on the lap of the mother. The  ${}^{2}H$  kit and the paper towels, if used, were weighed 95 immediately after administration of the dose and the weight was recorded to determine the dose 96 consumed, subtracting the weight of any dose spilled on the tissues. Saliva samples were collected 97 by two nurses. A cotton ball was put in the mouth of the child for 3 to 5 minutes. A sewing thread 98 was tightened around the cotton ball and hung out of the mouth of the child to prevent the child from 99 swallowing the cotton ball. The wet cotton ball was removed from the child's mouth and put into a 100 syringe barrel, and the saliva was pushed into a 1.5 ml cryotube. Saliva samples were stored at -20°C 101 until they were analysed for <sup>2</sup>H<sub>2</sub>O enrichment at St. Johns Research Institute, Bangalore, India. A pre-102 dose saliva sample was collected before giving the <sup>2</sup>H<sub>2</sub>O dose and a post-dose was collected 3 hours 103 after the <sup>2</sup>H<sub>2</sub>O dose was given. <sup>2</sup>H enrichment was measured by Fourier transformed infrared 104 spectrometer (FTIR) (Shimadzu Corporation, Kyoto, Japan) and analysed by the software developed 105 at MRC Dunn Nutrition Unit, Cambridge, UK. The instrument was calibrated with <sup>2</sup>H<sub>2</sub>O standards, 106 prepared in tap water, ranging from 100 - 2000 ppm. Saliva samples were centrifuged before analysis 107 108 and the clear sample loaded on a calcium fluoride cell (path length of 100 µm) without air bubbles. Enrichment of the pre-dose sample from the child was used for background correction of post-dose 109 samples. The samples were measured in duplicate and the coefficient of variation (CV) was <1%. 110 Inter-assay CV (of 1000 ppm standard) for the method was also <1%. The calculations of FFM and 111 FM based on  ${}^{2}\text{H}_{2}\text{O}$  enrichment results were undertaken by calculating the TBW in kg  ${}^{(18)}$ : 112

113

TBW (kg) = dilution space/1.041;

114 Dilution space = 
$${}^{2}$$
H dose given to child (mg) /enrichment in saliva (mg/kg)

The constant 1.041 was used to correct the isotope dilution space for non-aqueous proton exchange,
when calculating total body water <sup>(18)</sup>. To calculate the FFM and FM:

117

FFM= TBW/hydration factor; FM = weight of child (kg) – FFM (kg)

8

The FFM and FM were calculated individually and adjusted with specific hydration factors for sex and age of the child <sup>(19)</sup>. All children with percentage fat mass (FM%) <5%, were further reviewed and checked with field notes regarding any problems during the act of administering the  ${}^{2}\text{H}_{2}\text{O}$  to the child. In case of any uncertainty regarding the amount of  ${}^{2}\text{H}_{2}\text{O}$  dose consumed by the child, the child's results were excluded from the analyses.

The FFM index (FFMI) and the FM index (FMI) were calculated by FFM/length<sup>2</sup> (kg/m<sup>2</sup>) and FM/length<sup>2</sup> (kg/m<sup>2</sup>), respectively. These indices express FFM and FM normalized for length and are expressed in the same unit as BMI. Both FFM and FM and the corresponding indices FFMI and FMI were reported as body composition outcomes. It was anticipated that stunting, which only affects length, and wasting affecting weight-for-length could show differential correlations to body composition indicators with and without normalization for length.

Correlates. All anthropometric measures were recorded by the same four field assistants who had 129 been trained according to the WHO child growth guidelines (20). All measurements were performed 130 once by two different assistants and the mean measurement was used in the analysis. Weight was 131 measured by using an electronic scale (SECA scale, Hamburg, Germany), and recorded to the nearest 132 100 g. Length was measured to the nearest millimetre on locally produced length boards. Both SECA 133 scales and length boards were borrowed from World Food Programme, Cambodia. Anthropometric 134 z-scores, length-for-age z-score (LAZ) and WLZ were calculated based on WHO's 2006 Child 135 Growth Standards <sup>(21)</sup>, using WHO Anthro v.3.1 <sup>(22)</sup>. Additionally, triceps and subscapular skinfolds 136 137 were measured with a Harpenden skinfold caliper (Baty International, UK) to the nearest millimetre. If MUAC or skinfold measurements differed by more than 5 mm and 2 mm respectively, both 138 assistants had to repeat the measurement. 139

Breastfeeding status was determined both at the 6- and 15-month visit. To estimate if the child was
still breastfed, the question: *"Since this time yesterday, has the child been breastfed?" was asked.*Additionally, a few socio-demographic variables were obtained at the 6- month visit.

Statistical analysis. Data were double-entered in Epidata v.3.1 (The EpiData Association, Odense, Denmark) and analysed using STATA 12 for Windows (StataCorp, Texas, USA) and R (R Core Team, 2017) with the extension packages lme4, multcomp and turkeytrend. Comparison of data for boys and girls at the 6- and 15-month visits was carried out using chi-square tests and two-sample t-tests for categorical and continuous variables, respectively. Changes in FM, FFM, FMI and FFMI from 6 to 15 months were analysed by paired t-tests.

Separate linear mixed-effects models were fitted to FFM and weight. Age, sex, intervention groups 149 of the original trial design, and the interaction between visit (6 or 15 months) and either sex, 150 breastfeeding, length-for-age or weight-for-length z score categories, were included as fixed effects 151 and children and municipality were included as random (intercept) effects. Specifically, differences 152 between categories at 6 months and 15 months and changes in differences (between categories) 153 from 6 to 15 months were estimated; the latter corresponded to test for interaction. The 154 corresponding estimates for FM were derived from the estimates for FFM and weight using a 155 marginal models approach <sup>(23)</sup>. Similarly, models were fitted to BMI and FFMI and estimates were 156 derived for FMI. For triceps and subscapular skin folds, similar linear mixed-effects models were 157 fitted using the same fixed and random effects as for weight and FFM.For all analyses, model 158 assumptions were checked using residual and normal probability plots, respectively. A significance 159 level of 5% was used. No adjustment for multiple comparisons was applied. 160

Iual and Inc. for multiple comparisons

#### 161 **Results**

Of 514 infants screened, 419 (82%) were recruited for the nutrition intervention trial (Figure 1). The 162 mean age was 5.9 months [range: 5.0-7.9], and 53% were boys (Table 1). At the 6-month visit, 98% 163 were breastfed, 15% were stunted (LAZ<-2) and 4% were wasted (WLZ <-2). At 15 months, these 164 figures had changed to 78% breastfed, 24% stunted and 11% wasted children, with no differences 165 between boys and girls. Data on FFM and FM were available on 389 (93%) infants at the 6-month 166 visit and on 293 (82%) at the 15-month visit (Figure 1). In total, 413 children had FFM and FM data 167 from at least one visit. At the 6 month visit, children without body composition data had slightly 168 lower WLZ (0.4 vs. 0.7 z-scores, p< 0.05), but not LAZ. There were no differences in WLZ or LAZ 169 170 at the 15 months visit between children with vs. without body composition data. Boys had higher weight, length, MUAC, BMI, FM, FFM and FFMI, but not FMI than girls at the 6-month visit. At 171 172 15 months, the sex differences remained except that boys did not have a higher FM than girls (Table 2). FM and FMI decreased between 6 and 15 months (p<0.001), whereas FFM (p<0.001) but not 173 174 FFMI (p=0.09) increased. In adjusted analyses, higher weight in boys compared to girls both at the 6- and 15-month visits was mainly due to higher FFM (Table 3a); similarly higher BMI in boys was 175 176 mainly due to higher FFMI (Table 3b). At the 6-month visit, the 0.59 (95% CI 0.35; 0.83) kg/m<sup>2</sup> higher BMI in boys was due to 0.49 (95% CI 0.29; 0.68) kg/m<sup>2</sup> higher FFMI, and at the 15-month 177 visit, the 0.56 (95% CI 0. 31; 0.81) kg/m<sup>2</sup> higher BMI in boys was due to 0.45 (95% CI 0.23; 0.66) 178 179 kg/m<sup>2</sup> higher FFMI (Table 3b).

Breastfed and non-breastfed children did not differ in weight or BMI at the 6- or the 15-month visits (Table 3a and 3b). However, FMI was reduced by  $1.22 (0.39;2.05) \text{ kg/m}^2$  at the 6 month visit in nonbreastfed infants (n=6, 1.4%). At 15 months, non-breastfed infants (n=79, 22%) no longer had lower FMI compared to breastfed infants (-0.23, -0.51;0.051 kg/m<sup>2</sup>). FFMI tended to be higher in nonbreastfed infants at 6 months (0.74, -0.002;1.48 kg/m<sup>2</sup>) and was higher in non-breastfed compared to breastfed infants at 15 months (0.28, 0.03;0.53 kg/m<sup>2</sup>).

186 Deficits in weight/FM/FFM (Table 3a) and BMI/FMI/FFMI (Table 3b) increased as LAZ and WLZ 187 categories declined, i.e. higher deficits were observed for LAZ and WLZ <-2 than LAZ and WLZ 188 between -1 and -2 or -1 and 0. Stunting (LAZ <-2) was associated with reduced FM at 6 months and 189 lower FFM at both 6 and 15 months compared to children with LAZ  $\geq$ 0 (Table 3a). Stunting was not 190 associated with FFMI or FMI at 6 or 15 months (Table 3b). The BMI deficits associated with wasting at both 6- and 15-month visits were explained by lower FFMI as well as FMI. FMI deficits improved between 6 and 15 months for all z-score categories (interaction, p<0.05, table 3b and **Online supporting material**) whereas FFMI deficit point estimates worsened for all WLZ-score categories. However, worsening of FFMI deficit was only significant for WLZ between -1 and 0 (-0.4 kg/m<sup>2</sup> [-0.8; -0.03], p<0.05) (Table 3b and online supporting material). By comparison, the FFM deficits worsened in all z-score categories (p≤0.05) and FM deficits improved for WLZ between -2 and 0 (p < 0.05) from 6 to 15 months (Table 3a and online

- 198 supporting material).
- 199 Compared to children with  $LAZ \ge 0$ , stunted children had thinner triceps and subscapular skinfolds at
- 200 6 months but not at 15 months. Wasted children had thinner triceps and subscapular skinfolds both at
- the 6 and 15 months visits (Online supporting material).

202

d children nace pporting material).

#### 203 Discussion

This study showed that stunting, wasting, sex and breastfeeding status were associated with body composition in early life. Stunting was associated with a lower FMI at 6 months, but at 15 months there were no difference in FMI and FFMI compared to children with LAZ >0. For wasted children at 6 and 15 months, both FFMI and FMI were lower than in children with WLZ >0. The non-breastfed infants had lower FMI at 15 months compared to infants being breastfed.

- 209 The study population consisted of infants from rural Cambodia who, despite a very high prevalence of breastfeeding, had stunting and wasting rates of 14% and 4% respectively at 6 months of age. At 210 211 15 months, these were further deteriorated to 24% and 11% of children being stunted and wasted, although they all had received one of the four types of nutritional supplementation between the 6 and 212 15 month visits, and the majority continued breastfeeding until 15 months. This pattern of worsening 213 stunting during the complementary feeding period has been seen in many low income countries <sup>(24)</sup>. 214 It was apparently difficult to stop the decrease in LAZ and WLZ during this critical period. One 215 possible reason could be a high prevalence of environmental enteric dysfunction <sup>(25)</sup>. 216
- The decrease in fat mass and especially in fat mass index seen from 6 to 15 months in this study is expected and similar to the decline observed in infants from two reference groups from the USA (19,26). This decrease is also reflected in the decrease in skinfolds and BMI during this age period seen in the WHO growth Standards <sup>(21)</sup>.
- Boys had, as expected, a higher weight and BMI at both 6 and 15 months, as is also seen in the WHO growth standards <sup>(21)</sup>. The higher weight and BMI were explained mainly by a higher FFM and FFMI which has also been shown in many other studies showing higher lean mass in boys <sup>(27,28)</sup>.

#### 224 Stunting/wasting

Both stunting and wasting were associated with absolute deficits in FFM and FM, with the deficits increasing with the magnitude of malnutrition. Furthermore, the deficits in FFM increased with age, whereas those for FM decreased with age in children with WLZ <0. This indicates that malnutrition disproportionately affects FFM, with this impact increasing with age.

However, after adjusting for length, i.e. when using FMI and FFMI, the impact of stunting on fat-free
tissue decreased and lost significance. The fat-free tissue deficit associated with stunting is thus fully

13

explained by the reduced length, indicating that stunted children are gaining fat-free tissue in the sameproportion to their length as non-stunted children.

Regarding wasting, in contrast, deficits in fat-free and fat tissue remained apparent after adjusting for length. There was a subtle worsening of the fat-free tissue deficit with age, but a notable decrease in the magnitude of fat deficit. Again, in association with age, wasted children increasingly seem to preserve fat at the expense of FFM.

237 Preservation of fat in infants and undernourished children was also reported in other studies. A small, cross-sectional study from the Gambia assessed FFM and FM in 3-18 months old Gambian infants 238 239 against a reference group of healthy British infants (11). Data indicated that FFMI deficit in the Gambian infants initially increased, whereas the FMI deficit initially decreased with age. A study 240 followed-up a cohort of 320 Malawian children (median age 9.3 years, inter-quartile range 8.1-10.3) 241 that had been treated for SAM at a younger age. Compared to their nearest sibling and age and sex-242 matched community controls, the previous SAM cases had lower FFM (estimated by bio-electrical 243 impedance analysis), lower anthropometric measurements, weaker hand grip and shorter endurance 244 in an exercise test <sup>(29)</sup>. Another study in children with SAM in the Democratic Republic of Congo 245 analysed FM and FFM in a subgroup of children with an average age of 3 years <sup>(30)</sup>. After recovery 246 from SAM, these children had a lower FFM than non-wasted children from the same community. 247 However, FFMI was not different between the two groups <sup>(30)</sup>. 248

Mechanistically, the preferential accumulation of fat in undernourished children may be due to the 249 lack of specific type II nutrients, such as zinc, which are required for synthesis of FFM <sup>(31)</sup>. However 250 251 this scenario may also be viewed as an evolved survival strategy, stimulated by malnutrition during infancy (11,32). Developmental trade-offs between FM and FFM accretion are predicted by 252 evolutionary life history theory in association with various ecological factors, and future nutritional 253 interventions might benefit from considering this theoretical issue <sup>(33)</sup>. The involvement of fat reserves 254 in acute malnutrition was discussed by Bartz et al <sup>(12)</sup>. They conducted a comprehensive metabolomic 255 analysis of children admitted with SAM and found that low levels of leptin, a marker of adipose tissue 256 reserve, was the major biochemical factor predicting mortality. The authors further suggested that 257 fatty acid metabolism has an important role in adaptation to acute malnutrition. 258

To reduce the risk of lower muscle mass and strength in wasted children, the development of new nutritional interventions should be aimed at increasing accretion of FFM. In a multi-factorial study in 1,609 malnourished children aged 6-23 months, twelve different nutritional supplements were given over a period of 12 weeks. FFM constituted 93.5% of the weight increase and lipid-based nutrition supplements resulted in a 0.083 kg/m<sup>2</sup> higher FFMI than corn-soy-blends <sup>(34)</sup>. This indicates that energy-dense lipid-based nutrition supplements may reduce a detrimental decline in FFM in malnourished children.

In stunted children, preservation of FM over FFM has shown conflicting long-term results. Two 266 studies from Brazil found an association between stunting and risk of obesity in children (35,36). A 267 subsequent study at one of the sites found lower fat oxidation, a risk marker of obesity, in stunted 268 compared to non-stunted children (37). However, a birth cohort study in 2000 Brazilian boys found 269 270 low height-for-age z-score at ages 2 and 4 years to be associated with low FMI but not FFMI at 18 years of age, and low weight-for-height z-score at 2 and 4 years to be strongly associated with both 271 low FMI and FFMI <sup>(38)</sup> at 18 years. Thus, the birth cohort study indicated that stunting and wasting 272 in childhood was not associated with overweight in late adolescence. In sub-Saharan Africa a large 273 274 birth cohort study found no association between stunting and later obesity (39,40) and children who had been stunted at 2 years of age had lower FFM at 22 years than non-stunted children <sup>(41)</sup>. However, 275 276 few studies have had access to accurate body composition methodologies, and most published studies have addressed older age groups, when linear growth is relatively canalized. 277

#### 278 Breastfeeding

In the present study, we found that non-breastfed compared to breastfed children did not differ in 279 BMI at the 6- or the 15-month visit. At the 6-month visit, a lower FMI was observed in non-280 281 breastfed infants, which reduced in magnitude and only remained as a trend at 15 months. FFMI was higher in non-breastfed infants at both 6 and 15 months. At the 6 month visit only six infants 282 were non-breastfed, and these results therefore have to be interpreted with caution. A meta-analysis 283 found that formula-fed infants had a lower FM compared to breastfed infants at the age of 6 months, 284 but from 6-12 months the formula-fed infants were gaining more FM (13). Formula-fed infants had 285 higher FFM compared to breastfed infants throughout infancy. The non-breastfed infants of the 286 current study seem to have similar changes in FM and FFM as formula-fed compared to breastfed 287 infants in the meta-analysis. 288

A trial in Iceland, where infants were randomized to be exclusively breastfed until 6 months of age or to be introduced to complementary food at 4 months of age, showed that the latter had a 0.33 kg

(95% CI: -0.77; 0.11) lower FM at 6 months of age (42). At the 15-month visit, we found that the non-291 breastfed children had a lower FMI compared to the children who were still being breastfed. These 292 findings may suggest that breast milk supports the accretion of FM, which is likely to be an important 293 energy buffer to young children at risk of undernutrition during this period of rapid growth. In the 294 Lancet Breastfeeding series, it was concluded that there is suggestive evidence for breastfeeding 295 protecting against later obesity <sup>(43)</sup>. Interestingly, the protective effect was of the same magnitude in 296 low- and middle income countries as in high income countries <sup>(44)</sup>. Studies on how composition of 297 breastmilk is related to later body composition of the infant is also giving new insight into the 298 mechanisms by which early diet influence body composition. One study showed that human milk 299 leptin content at 1 months was inversely related to total body fat, percent fat mass and trunk fat at the 300 age of 6 months <sup>(45)</sup> and in another study several aspects of human milk oligosacharides pattern at 1 301 months was associated with body composition at 6 months (46). Furthermore, a study found that human 302 milk adiponectin was positively associated with body weight and sum of skinfolds up to 2 years <sup>(47)</sup>. 303

#### **304 Strengths and limitations**

Measurement of body composition in relation to stunting and wasting in infancy and early 305 childhood is a major strength of this paper. The <sup>2</sup>H dilution technique is considered a valuable 306 method to quantify whole body FM and FFM in research (48). Most earlier studies have used 307 anthropometric measures to examine body composition, but this was questioned in several studies 308 <sup>(49-50)</sup>. The <sup>2</sup>H dilution technique can be applied in field studies; however, in addition to being 309 expensive, it is a technically challenging method. If the practical work of administering <sup>2</sup>H to 310 children and/or collecting the saliva from children is not performed properly, it can introduce under-311 or overestimation of FM. Meticulous administration of <sup>2</sup>H and recording of spillage by one person 312 resulting in more accurate measurements of FM and FFM is therefore a strength of this study. It is a 313 limitation that data on breastfeeding only included information about "any breastfeeding the 314 previous 24 hours". The duration of exclusive breastfeeding and frequency of breastfeeding after 315 exclusive breastfeeding stopped may have influenced growth and body composition at 15 months 316 and especially at 6 months of age. The children in the study received nutritional intervention. This 317 318 may have implications on the generalizability of the results to similar children in the community who will not receive nutritional supplementation. 319

#### 320 Conclusion

The study has shed some light on how the body deals with malnutrition in infants and young 321 children in a food insecure setting with a high prevalence of breastfeeding. Boys had an expected 322 higher FFMI than girls at both the 6- and 15-month visits. Breastfeeding seemed to support 323 accretion of FM as indicated by a lower FMI in children who stopped breastfeeding before 15 324 months. Stunting at 6 months was associated with lower FMI, but not FFMI, whereas wasting at 325 both 6 and 15 months was associated with both lower FFMI and FMI. The FFMI deficit increased 326 slightly with age, but the FMI deficit decreased. Malnourished children seem to preserve body fat 327 for immediate survival at the expense of FFM accretion. This may have long-term consequences 328 with reduced functional outcomes and higher risk of non-communicable diseases. There is a need 329 for further studies from middle- and low-income countries on how nutrition intake influences body 330 composition, and how changes in body composition in early life influence growth, development and 331 long term health. 332

#### **333** Financial Support

This work was supported by the Consultative Research Committee for Development Research (FFU); Ministry of Foreign Affairs, Denmark; and the <sup>2</sup>H dilution technique for measuring body composition was supported with financial and technical support by International Atomic and

Energy Agency (IAEA). The funders had no role in the design, analysis or writing of this article.

#### 338 **Conflict of interest**

339 None

#### 340 Authorship

- J.K.H.S., T.B., C.C., C.H., S.F., F.T.W., M.A.D., J.B., H.F., K.F.M. and N.R. designed the research
- project. J.K.H.S., T.B., C.C., and C.M. conducted the research. J.K.H.S., B.G., J.C.W., K.F.M., N.R.
- 343 C.R. and H.F. analysed the data. J.K.H.S., B.G., K.F.M., J.C.W and H.F. wrote the first draft of the
- manuscript. All authors have read and approved the final manuscript.

345

#### References

- 1. Black RE, Victora CG, Walker SP *et al.* (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. *Lancet* **382**, 427–451.
- 2. Bhutta ZA, Das JK, Rizvi A *et al.* (2013) Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? *Lancet* **382**, 452–477.
- 3. Andersen GS, Girma T, Wells JCK *et al.* (2011) Fat and fat-free mass at birth: air displacement plethysmography measurements on 350 Ethiopian newborns. *Pediatr Res* **70**, 501–506.
- 4. Andersen GS, Girma T, Wells JCK *et al.* (2013) Body composition from birth to 6 mo of age in Ethiopian infants: reference data obtained by air-displacement plethysmography. *Am J Clin Nutr* **98**, 885–894.
- 5. Admassu B, Wells JCK, Girma T *et al.* (2017) Body composition at birth and height at 2 years: a prospective cohort study among children in Jimma, Ethiopia. *Pediatr Res* **82**, 209–214.
- 6. Abera M, Tesfaye M, Girma T *et al.* (2017) Relation between body composition at birth and child development at 2 years of age: a prospective cohort study among Ethiopian children. *Eur J Clin Nutr* **71**, 1411–1417.
- 7. Wells JCK, Chomtho S, Fewtrell MS (2007) Programming of body composition by early growth and nutrition. *Proc Nutr Soc* **66**, 423–434.
- 8. Kuzawa CW, Hallal PC, Adair L *et al.* (2012) Birth weight, postnatal weight gain, and adult body composition in five low and middle income countries. *Am J Hum Biol Off J Hum Biol Counc* **24**, 5–13.
- 9. Briend A, Garenne M, Maire B *et al.* (1989) Nutritional status, age and survival: the muscle mass hypothesis. *Eur J Clin Nutr* **43**, 715–726.
- Glob Health Epidemiol Genomics (2016) Body composition and the monitoring of noncommunicable chronic disease risk. https://www.cambridge.org/core/journals/global-healthepidemiology-and-genomics/article/body-composition-and-the-monitoring-of-noncommunicable-chronic-disease-risk/31BA09EDD900F0526B1140EE5FE6EB6B (accessed Nov 2018).
- 11. Wells JCK, Hawton K, Darch T *et al.* (2009) Body composition by 2H dilution in Gambian infants: comparison with UK infants and evaluation of simple prediction methods. *Br J Nutr* **102**, 1776–1782.
- 12. Bartz S, Mody A, Hornik C *et al.* (2014) Severe acute malnutrition in childhood: hormonal and metabolic status at presentation, response to treatment, and predictors of mortality. *J Clin Endocrinol Metab* **99**, 2128–2137.

- 13. Gale C, Logan KM, Santhakumaran S *et al.* (2012) Effect of breastfeeding compared with formula feeding on infant body composition: a systematic review and meta-analysis. *Am J Clin Nutr* **95**, 656–669.
- 14. Eriksen KG, Christensen SH, Lind MV *et al.* (2018) Human milk composition and infant growth. *Curr Opin Clin Nutr Metab Care* **21**, 200-206.
- 15. Koletzko B, Kirchberg FF, Hellmuth C, *et al.* (2018) Metabolic Regulation of Pre- and Postnatal Growth. *Nestle Nutr Inst Workshop Ser.* **89**, 79-91.
- 16. National Institute of Statistics, Directorate General for Health, ICF International (2015) *Cambodia Demographic and Health Survey 2014*. Phnom Penh, Cambodia, and Rockville, Maryland, USA: National Institute of Statistics, Directorate General for Health, and ICF International.
- 17. Skau JKH, Touch B, Chhoun C *et al.* (2015) Effects of animal source food and micronutrient fortification in complementary food products on body composition, iron status, and linear growth: a randomized trial in Cambodia. *Am J Clin Nutr* **101**, 742–751.
- 18. International Atomic and Energy Agency (2010) Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Saliva Samples by Fourier Transform Infrared Spectrometry. http://wwwpub.iaea.org/books/iaeabooks/8369/Introduction-to-Body-Composition-Assessment-Usingthe-Deuterium-Dilution-Technique-with-Analysis-of-Saliva-Samples-by-Fourier-Transform-Infrared-Spectrometry (accessed October 2012)
- 19. Fomon SJ, Haschke F, Ziegler EE *et al.* (1982) Body composition of reference children from birth to age 10 years. *Am J Clin Nutr* **35**, Suppl. 5,1169–1175.
- 20. World Health Organization (2008) *Training Course on Child Growth Assessment*. Geneva: WHO.
- 21. World Health Organization (2006) Child Growth Standards Length/height-for-age, weight-forage, weight-for-length, weight-for-height and body mass index-for-age Methods and development. Geneva: WHO
- 22. World Health Organization (2018) Anthropometric software informer. http://whoanthro.software.informer.com/3.1/ (accessed Nov 2018)
- 23 Ritz C, Laursen RP, Damsgaard CT (2017) Simultaneous inference for multilevel linear mixed models—with an application to a large-scale school meal study. *J. R. Stat. Soc. C* **66**,295-311.
- 24. Victora CG, de Onis M, Hallal PC *et al.* (2010) Worldwide timing of growth faltering: revisiting implications for interventions. *Pediatrics* **125**, 473-480.
- 25. Crane RJ, Jones KD, Berkley JA (2015) Environmental enteric dysfunction: An overview. *Food Nutr Bull* **36**, Suppl. 1, 76S–87S.
- 26. Butte NF, Hopkinson JM, Wong WW *et al.* (2000) Body composition during the first 2 years of life: an updated reference. *Pediatr Res* **47**, 578–585.

- 28. Park H, Park K, Kim MH *et al.* (2011) Gender differences in relationship between fat-free mass index and fat mass index among Korean children using body composition chart. Yonsei *Med J* **52**, 948–952.
- 29. Lelijveld N, Seal A, Wells JC *et al.* (2016) Chronic disease outcomes after severe acute malnutrition in Malawian children (ChroSAM): a cohort study. *Lancet Glob Health* **4**, 654-662.
- 30. Bahwere P, Balaluka B, Wells JCK *et al.* (2016) Cereals and pulse-based ready-to-use therapeutic food as an alternative to the standard milk- and peanut paste-based formulation for treating severe acute malnutrition: a noninferiority, individually randomized controlled efficacy clinical trial. *Am J Clin Nutr* **103**, 1145–1161.
- 31. Golden BE, Golden MH (1992) Effect of zinc on lean tissue synthesis during recovery from malnutrition. *Eur J Clin Nutr* **46**, 697–706.
- 32. Owino VO, Kasonka LM, Sinkala MM *et al.* (2007) Fortified complementary foods with or without alpha-amylase treatment increase hemoglobin but do not reduce breast milk intake of 9-mo-old Zambian infants. *Am J Clin Nutr* **86**, 1094–1103.
- 33. Wells JCK, Nesse RM, Sear R *et al.* (2017) Evolutionary public health: introducing the concept. *The Lancet* **390**, 500–509.
- Fabiansen C, Yaméogo CW, Iuel-Brockdorf A-S *et al.* (2017) Effectiveness of food supplements in increasing fat-free tissue accretion in children with moderate acute malnutrition: A randomised 2 × 2 × 3 factorial trial in Burkina Faso. *PLoS Med* 14, e1002387.
- 35. Sawaya AL, Dallal G, Solymos G, *et al.* (1995) Obesity and malnutrition in a Shantytown population in the city of Sao Paulo, Brazil. *Obes Res* **3** (Suppl 2), 107s–15s.
- 36. Martins PA, Hoffman DJ, Fernandes MTB, *et al.* (2004) Stunted children gain less lean body mass and more fat mass than their non-stunted counterparts: a prospective study. *Br J Nutr* **92**, 819–825.
- 37. Hoffman DJ, Sawaya AL, Verreschi I *et al.* (2000) Why are nutritionally stunted children at increased risk of obesity? Studies of metabolic rate and fat oxidation in shantytown children from São Paulo, Brazil. *Am J Clin Nutr* **72**, 702–707.
- 38. Gigante DP, Victora CG, Horta BL *et al.* (2007) Undernutrition in early life and body composition of adolescent males from a birth cohort study. *Br J Nutr* **97**, 949–954.
- 39. Cameron N, Wright MM, Griffiths PL *et al.* (2005) Stunting at 2 years in relation to body composition at 9 years in African urban children. *Obes Res* **13**, 131–136.

- 40. Hanson SK, Munthali RJ, Lundeen EA, *et al.* (2018) Stunting at 24 Months Is Not Related to Incidence of Overweight through Young Adulthood in an Urban South African Birth Cohort. *J Nutr* **148**, 967-973.
- 41. Prioreschi A, Munthali RJ, Kagura J, *et al.* (2018) The associations between adult body composition and abdominal adiposity outcomes, and relative weight gain and linear growth from birth to age 22 in the Birth to Twenty Plus cohort. *PLoS One* **13**, *e0190483*
- 42. Wells JCK, Jonsdottir OH, Hibberd PL *et al.* (2012) Randomized controlled trial of 4 compared with 6 mo of exclusive breastfeeding in Iceland: differences in breast-milk intake by stable-isotope probe. *Am J Clin Nutr* **96**, 73–79.
- 43. Victora CG, Bahl R, Barros AJD *et al* (2016). Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. *Lancet Lond Engl* **387**, 475–490.
- 44. Horta BL, Loret de Mola C, Victora CG (2015) Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta-analysis. *Acta Paediatr Oslo Nor* **104**, 30–37.
- 45. Fields DA, George B, Williams M *et al.* (2017) Associations between human breast milk hormones and adipocytokines and infant growth and body composition in the first 6 months of life. *Pediatr Obes.* **12** Suppl 1:78-85.
- 46. Alderete TL, Autran C, Brekke BE *et al.* (2015). Associations between human milk oligosaccharides and infant body composition in the first 6 mo of life. *Am J Clin Nutr.* **102**, 1381-8.
- 47. Brunner S, Schmid D, Zang K *et al.* (2015) Breast milk leptin and adiponectin in relation to infant body composition up to 2 years. *Pediatr Obes.***10**, 67-73.
- 48. Wells JCK, Fewtrell MS (2006) Measuring body composition. Arch Dis Child 91, 612–617.
- 49. Jensen SM, Mølgaard C, Ejlerskov KT *et al.* (2015) Validity of anthropometric measurements to assess body composition, including muscle mass, in 3-year-old children from the SKOT cohort. *Matern Child Nutr* **11**, 398–408.
- 50. Chomtho S, Fewtrell MS, Jaffe A et al. (2006) Evaluation of arm anthropometry for assessing pediatric body composition: evidence from healthy and sick children. *Pediatr Res* **59**, 860–865.

| Data are presented as n (%) or mean and SD |     |    |      |     |
|--------------------------------------------|-----|----|------|-----|
| Child characteristics                      | n   | %  | Mean | SD  |
| Boys                                       | 220 | 53 |      |     |
| Age at recruitment, months                 |     |    | 5.9  | 0.6 |
| Household size                             |     |    |      |     |
| Number of people in the household          |     |    | 5.3  | 1.7 |
| Number of children below 5 years           |     |    | 1.3  | 0.6 |
| Water and sanitation                       |     |    |      |     |
| Source of drinking water                   |     |    |      |     |
| Unprotected well                           | 232 | 55 |      |     |
| Protected well <sup>a</sup>                | 186 | 44 |      |     |
| Toilet facility                            |     |    |      |     |
| Flush or pour flush toilet                 | 321 | 77 |      |     |
| Pit latrine                                | 88  | 21 |      |     |
| Socio-economic status                      |     |    |      |     |
| Education                                  |     |    |      |     |
| Caregiver education, years                 |     |    | 5.3  | 2.5 |
| Household head education, years            |     |    | 6.7  | 2.8 |
| Primary income                             |     |    |      |     |
| Farming                                    | 237 | 57 |      |     |
| Employment/salary/daily labour             | 110 | 26 |      |     |
| Other                                      | 72  | 17 |      |     |
| Households owning land                     | 390 | 93 |      |     |

**Table 1**: Baseline characteristics of 419 Cambodian children Data are presented as  $p_{1}(\theta_{1})$  or mean and SD

<sup>a</sup>Protected well is defined as a well with a lid

| 2 | 2 |
|---|---|
| - | _ |

|                              |     | <u>6 n</u> | ionth | 5   |       |     |         |     |      | 1   | 5 mor | nths  |     |         |
|------------------------------|-----|------------|-------|-----|-------|-----|---------|-----|------|-----|-------|-------|-----|---------|
|                              | Ν   | Boys       | SD    | Ν   | Girls | SD  | р       | Ν   | Boys | SD  | Ν     | Girls | SD  | р       |
| Breastfeeding, %             |     |            |       |     |       |     |         |     |      |     |       |       |     |         |
| Not breastfed                | 3   | 1.4        |       | 4   | 2.0   |     | 0.89    | 33  | 17.3 |     | 46    | 27.7  |     | 0.025   |
| Breastfed                    | 216 | 98.6       |       | 194 | 98.0  |     |         | 158 | 82.7 |     | 120   | 72.3  |     |         |
| Age at                       | 220 | 5.6        | 0.8   | 199 | 5.6   | 0.7 | 0.14    |     |      |     |       |       |     |         |
| introduction to              |     |            |       |     |       |     |         |     |      |     |       |       |     |         |
| complementary                |     |            |       |     |       |     |         |     |      |     |       |       |     |         |
| food, months                 |     |            |       |     |       |     |         |     |      |     |       |       |     |         |
| Weight, kg                   | 220 | 7.1        | 0.9   | 199 | 6.5   | 0.8 | < 0.001 | 192 | 8.9  | 0.9 | 166   | 8.2   | 0.8 | < 0.001 |
| Length, cm                   | 220 | 65.2       | 2.3   | 199 | 63.5  | 2.3 | < 0.001 | 192 | 75.7 | 2.4 | 166   | 74.1  | 2.7 | < 0.001 |
| MUAC, cm                     | 219 | 14.1       | 1.0   | 199 | 13.7  | 1.0 | < 0.001 | 192 | 13.9 | 0.9 | 166   | 13.4  | 0.8 | < 0.001 |
| LAZ, %                       |     |            |       |     |       |     | 0.47    |     |      |     |       |       |     | 0.27    |
| <-2                          | 36  | 16.4       |       | 26  | 13.1  |     | 0.42    | 47  | 24.6 |     | 38    | 23.0  |     | 0.82    |
| $-2 \leq \text{and} \leq -1$ | 74  | 33.6       |       | 59  | 29.6  |     | 0.44    | 75  | 39.3 |     | 52    | 31.5  |     | 0.16    |
| $-1 \le$ and $<0$            | 78  | 35.4       |       | 84  | 42.2  |     | 0.19    | 58  | 30.3 |     | 60    | 36.4  |     | 0.28    |
| $\geq 0$                     | 32  | 14.5       |       | 30  | 15.1  |     | 0.99    | 11  | 5.8  |     | 15    | 9.1   |     | 0.32    |
| WLZ, %                       |     |            |       |     |       |     | 0.31    |     |      |     |       |       |     | 0.31    |
| <-2                          | 12  | 5.5        |       | 6   | 3.0   |     | 0.32    | 22  | 11.5 |     | 17    | 10.2  |     | 0.84    |
| $-2 \leq \text{and} \leq -1$ | 39  | 17.7       |       | 47  | 23.6  |     | 0.17    | 80  | 41.7 |     | 61    | 36.8  |     | 0.40    |
| $-1 \le$ and $\le 0$         | 99  | 45.0       |       | 82  | 41.2  |     | 0.49    | 70  | 36.5 |     | 76    | 45.8  |     | 0.09    |
| $\geq 0$                     | 70  | 31.8       |       | 64  | 32.2  |     | >0.99   | 20  | 10.4 |     | 12    | 7.2   |     | 0.39    |
| BMI, kg/m <sup>2</sup>       | 220 | 16.7       | 1.4   | 199 | 16.1  | 1.4 | < 0.001 | 192 | 15.5 | 1.0 | 166   | 15.0  | 1.0 | < 0.001 |
| FM, kg                       | 205 | 1.6        | 0.5   | 184 | 1.4   | 0.5 | 0.013   | 161 | 1.3  | 0.5 | 132   | 1.2   | 0.5 | 0.24    |
| FFM, kg                      | 205 | 5.6        | 0.6   | 184 | 5.1   | 0.6 | < 0.001 | 161 | 7.6  | 0.8 | 132   | 7.0   | 0.8 | < 0.001 |
| FMI, kg/m <sup>2</sup>       | 205 | 3.6        | 1.1   | 184 | 3.6   | 1.1 | 0.46    | 161 | 2.3  | 0.9 | 132   | 2.2   | 0.8 | 0.52    |
| FFMI, kg/m <sup>2</sup>      | 205 | 13.1       | 0.9   | 184 | 12.6  | 1.0 | < 0.001 | 161 | 13.2 | 0.9 | 132   | 12.7  | 1.0 | < 0.001 |

**Table 2.** Breastfeeding status, anthropometry, fat mass and fat free mass in Cambodian boys and girls at 6 and 15 months of age.

Results are shown as mean, SD, and N (number of children in each analysis). MUAC, Mid-upper arm circumference; LAZ, Length-for-age z-score; WLZ, Weight-for-length z-score; BMI, Body mass index; FM, Fat mass; FFM, Fat-free mass; FMI, Fat mass index; FFMI, Fat-free mass index.

| Californial cliffulen at 0 a              | and 15 m | onthis of age (II- | 415). |               |       |               |       |               |       |               |       |              |  |
|-------------------------------------------|----------|--------------------|-------|---------------|-------|---------------|-------|---------------|-------|---------------|-------|--------------|--|
|                                           |          |                    | 6     | months        |       | 15 months     |       |               |       |               |       |              |  |
|                                           | W        | eight, kg          | I     | FFM, kg       |       | FM, kg        | W     | eight, kg     | ]     | FFM, kg       | -     | FM, kg       |  |
|                                           | Diff.    | 95% CI             | Diff. | 95% CI        | Diff. | 95% CI        | Diff. | 95% CI        | Diff. | 95% CI        | Diff. | 95% CI       |  |
| Sex <sup>a</sup>                          |          |                    |       |               |       |               |       |               |       |               |       |              |  |
| Boy                                       | 0.63     | 0.47;0.78*         | 0.49  | 0.36; 0.61*   | 0.14  | 0.05;0.23*    | 0.66  | 0.50; 0.83*   | 0.57  | 0.42;0.71*    | 0.10  | -0.05; 0.25  |  |
| Girl                                      | -        | -                  | -     | -             | -     | -             | -     | -             | -     | -             | -     | -            |  |
| <b>Breastfeeding</b> <sup>b</sup> (n=412) |          |                    |       |               |       |               |       |               |       |               |       |              |  |
| Not breastfed                             | -0.30    | -0.68;0.09         | 0.22  | -0.24;0.69    | -0.52 | -0.87;-0.17*  | -0.05 | -0.17;0.07    | 0.15  | 0.002;0.30*   | -0.20 | -0.34;-0.06* |  |
| Breastfed                                 | -        | -                  | -     | -             | -     | -             | -     | -             | -     | -             | -     | -            |  |
| Length-for-age Z <sup>c</sup>             |          |                    |       |               |       |               |       |               |       |               |       |              |  |
| <-2                                       | -1.40    | -1.58;-1.23*#      | -1.13 | -1.31;-0.96*# | -0.27 | -0.43;-0.12*  | -1.74 | -1.95;-1.53*  | -1.57 | -1.80;-1.35*  | -0.17 | -0.40; 0.07  |  |
| -2≤ and <-1                               | -0.90    | -1.04;-0.75*       | -0.78 | -0.93;-0.63*  | -0.12 | -0.25;0.02    | -1.08 | -1.28;-0.88*  | -1.00 | -1.22;-0.79*  | -0.08 | -0.30; 0.15  |  |
| $-1 \leq \text{and} < 0$                  | -0.45    | -0.59;-0.31*       | -0.39 | -0.54;-0.25*  | -0.06 | -0.19:0.08    | -0.53 | -0.72;-0.34*  | -0.49 | -0.71;-0.28*  | -0.04 | -0.26; 0.19  |  |
| $\geq 0$                                  | -        | _                  | -     | _             | -     | -             | -     | _             | -     | _             | -     | _            |  |
| Weight-for-length Z <sup>d</sup>          |          |                    |       |               |       |               |       |               |       |               |       |              |  |
| <-2                                       | -1.54    | -1.75; -1.34*      | -0.99 | -1.26;-0.72*# | -0.55 | -0.78;-0.33*  | -1.66 | -1.84; -1.47* | -1.44 | -1.69; -1.19* | -0.22 | -0.51; 0.08  |  |
| $-2 \leq \text{and} \leq -1$              | -1.03    | -1.14; -0.91*      | -0.48 | -0.63;-0.33*# | -0.54 | -0.67;-0.42*# | -1.14 | -1.29;-0.98*  | -1.07 | -1.28; -0.86* | -0.07 | -0.33; 0.19  |  |
| $-1 \leq$ and $< 0$                       | -0.61    | -0.70; -0.52*      | -0.30 | -0.42;-0.18*# | -0.31 | -0.40;-0.22*# | -0.52 | -0.66; -0.37* | -0.70 | -0.90; -0.50* | 0.18  | -0.08; 0.45  |  |
| >0                                        | -        | -                  | _     | -             | -     | -             | _     | -             | -     | -             | -     | _            |  |

**Table 3a.** Estimated mean differences in weight, fat-free mass, and fat mass within sex, breastfeeding, length-for-age and weight-for-length z score categories among Cambodian children at 6 and 15 months of age (n=413).

FFM, Fat-free mass; FM, Fat mass.

Separate linear mixed-effects models were fitted to FFM and weight. Age, sex, intervention groups of the original trial design, and the interaction between visit (6 or 15 months) and either asex, <sup>b</sup>breastfeeding, <sup>c</sup>length-for-age or <sup>d</sup>weight-for-length z-score categories were included as fixed effects and children and municipality were included as random (intercept) effects. Estimates for FM were derived from the corresponding estimates for FFM and weight (with error propagation).

\* Significantly different (p < 0.05) from the reference category.

# Significant interaction i.e., change in difference between 6 and 15 months (p<0.05).

**Table 3b**. Estimated mean differences in body mass index, fat-free mass index, and fat mass index within sex, breastfeeding, length-for-age and weight-for-length z score categories among Cambodian children at 6 and 15 months of age (n=413).

|                                           |       |                       | 6            | months                |       | 15 months             |       |                       |       |                       |       |                        |  |
|-------------------------------------------|-------|-----------------------|--------------|-----------------------|-------|-----------------------|-------|-----------------------|-------|-----------------------|-------|------------------------|--|
|                                           | Bl    | MI, kg/m <sup>2</sup> | FF           | MI, kg/m <sup>2</sup> | FN    | MI, kg/m <sup>2</sup> | BN    | MI, kg/m <sup>2</sup> | FF    | MI, kg/m <sup>2</sup> | FN    | /II, kg/m <sup>2</sup> |  |
|                                           | Diff. | 95% CI                | Diff. 95% CI |                       | Diff. | 95% CI                 |  |
| Sex <sup>a</sup>                          |       |                       |              |                       |       |                       |       |                       |       |                       |       |                        |  |
| Boy                                       | 0.59  | 0.35;0.83*            | 0.49         | 0.29; 0.68*           | 0.10  | -0.13;0.34            | 0.56  | 0.31; 0.81*           | 0.45  | 0.23;0.66*            | 0.11  | -0.18; 0.40            |  |
| Girl                                      | -     | -                     | -            | -                     | -     | -                     | -     | -                     | -     | -                     | -     | -                      |  |
| <b>Breastfeeding</b> <sup>b</sup> (n=412) |       |                       |              |                       |       |                       |       |                       |       |                       |       |                        |  |
| Not breastfed                             | -0.48 | -1.16;0.21            | 0.74         | -0.002;1.48           | -1.22 | -2.05;-0.39*#         | 0.05  | -0.16;0.26            | 0.28  | 0.03;0.53*            | -0.23 | -0.51;0.051            |  |
| Breastfed                                 | -     | _                     | -            | -                     | -     | _                     | -     | _                     | -     | _                     | -     | _                      |  |
| Length-for-age Z <sup>c</sup>             |       |                       |              |                       |       |                       |       |                       |       |                       |       |                        |  |
| <-2                                       | -0.46 | -0.82;-0.11*          | -0.16        | -0.50;0.18            | -0.30 | -0.65;0.05            | -0.17 | -0.59;0.26            | -0.15 | -0.59;0.30            | -0.02 | -0.47;0.42             |  |
| $-2 \leq \text{and} \leq -1$              | -0.21 | -0.51;0.08            | -0.19        | -0.48;0.10            | -0.03 | -0.32;0.27            | -0.01 | -0.40;0.39            | -0.12 | -0.54;0.30            | 0.12  | -0.30,0.53             |  |
| $-1 \leq \text{and} < 0$                  | -0.07 | -0.35;0.20            | -0.03        | -0.31;0.25            | -0.04 | -0.32:0.24            | 0.07  | -0.31;0.45            | 0.01  | -0.41;0.43            | 0.06  | -0.35;0.46             |  |
| $\geq 0$                                  | -     | _                     | -            | _                     | -     | -                     | -     | _                     | -     | _                     | -     | _                      |  |
| Weight-for-length Z <sup>d</sup>          |       |                       |              |                       |       |                       |       |                       |       |                       |       |                        |  |
| <-2                                       | -4.06 | -4.34;-3.79*#         | -1.94        | -2.36;-1.52*          | -2.12 | -2.53;-1.72*#         | -3.37 | -3.63; -3.11*         | -2.05 | -2.45,-1.65*          | -1.32 | -1.77;-0.87*           |  |
| -2< and <-1                               | -2.95 | -3.10;-2.80*#         | -1.14        | -1.37;-0.90*          | -1.82 | -2.09;-1.54*#         | -2.39 | -2.60; -2.17*         | -1.47 | -1.80;-1.14*          | -0.91 | -1.31;-0.51*           |  |
| $-1 \le$ and $\le 0$                      | -1.83 | -1.95;-1.70*#         | -0.70        | -0.88;-0.51*#         | -1.13 | -1.35;-0.91*#         | -1.39 | -1.60; -1.17*         | -1.09 | -1.42;-0.77*          | -0.29 | -0.71;0.12             |  |
| <u>≥0</u>                                 | -     | -                     | -            | -                     | -     | -                     | -     | -                     | -     | _                     | -     | -                      |  |

BMI, Body mass index; FFMI, Fat-free mass index; FMI, Fat mass index.

Separate linear mixed-effects models were fitted to BMI and FFMI. Age, sex, intervention groups of the original trial design, and the interaction between visit (6 or 15 months) a either <sup>a</sup>sex, <sup>b</sup>breastfeeding, <sup>c</sup>length-for-age or <sup>d</sup>weight-for-length z score categories were included as fixed effects and children and municipality were included as random (interce effects. Estimates for FMI were derived from the corresponding estimates for BMI and FFMI (with error propagation).

\* Significantly different (p< 0.05) from the reference category.

# Significant interaction i.e., change in difference between 6 and 15 months (p<0.05).

#### **Figure legends**

Figure 1: Flow diagram of study participants

Figure 1 footnote: Definition of "valid body composition data": Body composition calculated from children with no uncertainty about <sup>2</sup>H spillage, resulting in more precise calculations of fat mass and fat-free mass.

to Review Only

#### Figure 1



#### **Online supporting material**

| <b>Fable 1.</b> Estimated mean differences in weight, fat-free mass, and fat mass within sex, breastfeeding, length-for-age and weight-for-length z score categories among Cambodian children at 6 and 15 months of age (n=413) |       |               |       |              |       |              |       |               |         |               |       |              |       |              |       |              |       |            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|-------|--------------|-------|--------------|-------|---------------|---------|---------------|-------|--------------|-------|--------------|-------|--------------|-------|------------|--|
|                                                                                                                                                                                                                                 |       |               | 6     | months       |       |              |       | 15 months     |         |               |       |              |       | Interaction  |       |              |       |            |  |
|                                                                                                                                                                                                                                 | W     | Veight, kg    |       | FFM, kg      |       | FM, kg       | v     | Veight, kg    | FFM, kg |               |       | FM, kg       |       | Weight, kg   |       | FFM, kg      |       | FM, kg     |  |
|                                                                                                                                                                                                                                 | Diff  | 95% CI        | Diff  | 95% CI       | Diff  | 95% CI       | Diff  | 95% CI        | Diff    | 95% CI        | Diff  | 95% CI       | Diff  | 95% CI       | Diff  | 95% CI       | Diff  | 95% CI     |  |
| Sex <sup>a</sup>                                                                                                                                                                                                                |       |               |       |              |       |              |       |               |         |               |       |              |       |              |       |              |       |            |  |
| Boy                                                                                                                                                                                                                             | 0.63  | 0.47;0.78*    | 0.49  | 0.36; 0.61*  | 0.14  | 0.05;0.23*   | 0.66  | 0.50; 0.83*   | 0.57    | 0.42;0.71*    | 0.10  | -0.05; 0.25  | 0.04  | -0.06;0.14   | 0.08  | -0.06;0.21   | -0.04 | -0.16;0.09 |  |
| Girl                                                                                                                                                                                                                            | -     | -             | -     | -            | -     | -            |       |               |         |               |       |              | -     | -            | -     | -            | -     | -          |  |
| Breastfeeding <sup>b</sup> (n=412)                                                                                                                                                                                              |       |               |       |              |       |              |       |               |         |               |       |              |       |              |       |              |       |            |  |
| Not breastfed                                                                                                                                                                                                                   | -0.30 | -0.68;0.09    | 0.22  | -0.24;0.69   | -0.52 | -0.87;-0.17* | -0.05 | -0.17;0.07    | 0.15    | 0.002;0.30*   | -0.20 | -0.34;-0.06* | 0.25  | -0.14;0.64   | -0.07 | -0.55;0.40   | 0.32  | -0.06;0.70 |  |
| Breastfed                                                                                                                                                                                                                       | -     | -             | -     | -            | -     | -            |       |               |         |               |       |              | -     | -            | -     | -            | -     | -          |  |
| LAZ <sup>c</sup>                                                                                                                                                                                                                |       |               |       |              |       |              |       |               |         |               |       |              |       |              |       |              |       |            |  |
| <-2                                                                                                                                                                                                                             | -1.40 | -1.58;-1.23*  | -1.13 | -1.31;-0.96* | -0.27 | -0.43;-0.12* | -1.74 | -1.95;-1.53*  | -1.57   | -1.80;-1.35*  | -0.17 | -0.40; 0.07  | -0.34 | -0.54;-0.13# | -0.44 | -0.70;-0.18# | 0.10  | -0.15;0.35 |  |
| -2≤ and <-1                                                                                                                                                                                                                     | -0.90 | -1.04;-0.75*  | -0.78 | -0.93;-0.63* | -0.12 | -0.25;0.02   | -1.08 | -1.28;-0.88*  | -1.00   | -1.22;-0.79*  | -0.08 | -0.30; 0.15  | -0.18 | -0.37;0.01   | -0.22 | -0.46;0.02   | 0.04  | -0.19;0.27 |  |
| $-1 \le$ and $\le 0$                                                                                                                                                                                                            | -0.45 | -0.59;-0.31*  | -0.39 | -0.54;-0.25* | -0.06 | -0.19:0.08   | -0.53 | -0.72;-0.34*  | -0.49   | -0.71;-0.28*  | -0.04 | -0.26; 0.19  | -0.08 | -0.27;0.11   | -0.10 | -0.34;0.15   | 0.02  | -0.21:0.26 |  |
| $\geq 0$                                                                                                                                                                                                                        | -     | -             | -     | -            | _     |              |       |               |         |               |       |              | -     | -            | -     | -            | -     | -          |  |
| WLZ <sup>d</sup>                                                                                                                                                                                                                |       |               |       |              |       |              |       |               |         |               |       |              |       |              |       |              |       |            |  |
| <-2                                                                                                                                                                                                                             | -1.54 | -1.75; -1.34* | -0.99 | -1.26;-0.72* | -0.55 | -0.78;-0.33* | -1.66 | -1.84; -1.47* | -1.44   | -1.69; -1.19* | -0.22 | -0.51; 0.08  | -0.11 | -0.35; 0.13  | -0.45 | -0.79;-0.11# | 0.34  | -0.02;0.69 |  |
| -2≤ and <-1                                                                                                                                                                                                                     | -1.03 | -1.14; -0.91* | -0.48 | -0.63;-0.33* | -0.54 | -0.67;-0.42* | -1.14 | -1.29;-0.98*  | -1.07   | -1.28; -0.86* | -0.07 | -0.33; 0.19  | -0.11 | -0.27; 0.05  | -0.59 | -0.82;-0.35# | 0.48  | 0.20;0.75# |  |
| $-1 \le$ and $\le 0$                                                                                                                                                                                                            | -0.61 | -0.70; -0.52* | -0.30 | -0.42;-0.18* | -0.31 | -0.40;-0.22* | -0.52 | -0.66; -0.37* | -0.70   | -0.90; -0.50* | 0.18  | -0.08; 0.45  | 0.09  | -0.06; 0.25  | -0.40 | -0.62;-0.18# | 0.49  | 0.21;0.77# |  |
| <u>≥0</u>                                                                                                                                                                                                                       | -     | -             | -     | -            | -     | -            | -     |               | -       | -             | -     | -            | -     | -            | -     | -            | -     | -          |  |

FFM, Fat-free mass; FM, Fat mass, LAZ, Length-for-age Z, WLZ, Weight-for-length Z

Separate linear mixed-effects models were fitted to FFM and weight. Age, sex, intervention groups of the original trial design, and the interaction between visit (6 or 15 months) and either asex, breastfeeding, cLAZ or dWLZ categories were included as fixed effects and children and municipality were included as random (intercept) effects. Estimates for FM were derived from the corresponding estimates for FFM and weight (with error propagation).

the

\* Significantly different (p< 0.05) from the reference category. # Significant interaction i.e., change in difference between 6 and 15 months

**Table 2**. Estimated mean differences in body mass index, fat-free mass index, and fat mass index within sex, breastfeeding, length-for-age and weight-for-length z score categories among Cambodian children at 6 and 15 months of age (n=413)

|                                    |       |                       |       | 6 months              |                        |               |               |                       | 5 months | Interaction           |       |                       |       |                       |       |                       |      |                        |
|------------------------------------|-------|-----------------------|-------|-----------------------|------------------------|---------------|---------------|-----------------------|----------|-----------------------|-------|-----------------------|-------|-----------------------|-------|-----------------------|------|------------------------|
|                                    | B     | MI, kg/m <sup>2</sup> | FF    | MI, kg/m <sup>2</sup> | FMI, kg/m <sup>2</sup> |               | B             | MI, kg/m <sup>2</sup> | FF       | MI, kg/m <sup>2</sup> | Fl    | MI, kg/m <sup>2</sup> | B     | MI, kg/m <sup>2</sup> | FF    | MI, kg/m <sup>2</sup> | FN   | /II, kg/m <sup>2</sup> |
|                                    | Diff  | 95% CI                | Diff  | 95% CI                | Diff                   | 95% CI        | Diff          | 95% CI                | Diff     | 95% CI                | Diff  | 95% CI                | Diff  | 95% CI                | Diff  | 95% CI                | Diff | 95% CI                 |
| Sex <sup>a</sup>                   |       |                       |       |                       |                        |               |               |                       |          |                       |       |                       |       |                       |       |                       |      |                        |
| Boy                                | 0.59  | 0.35;0.83*            | 0.49  | 0.29; 0.68*           | 0.10                   | -0.13;0.34    | 0.56          | 0.31; 0.81*           | 0.45     | 0.23;0.66*            | 0.11  | -0.18; 0.40           | -0.03 | -0.21;0.15            | -0.04 | -0.28;0.20            | 0.01 | -0.24;0.26             |
| Girl                               | -     | -                     | -     | -                     | -                      | -             | -             | -                     | -        | -                     | -     | -                     | -     | -                     | -     | -                     | -    | -                      |
| Breastfeeding <sup>b</sup> (n=412) |       |                       |       |                       |                        |               |               |                       |          |                       |       |                       |       |                       |       |                       |      |                        |
| Not breastfed                      | -0.48 | -1.16;0.21            | 0.74  | -0.002;1.48           | -1.22                  | -2.05;-0.39*# | 0.05          | -0.16;0.26            | 0.28     | 0.03;0.53*            | -0.23 | -0.51;0.051           | 0.53  | -0.16;1.22            | -0.46 | -1.23;0.32            | 0.98 | 0.11;1.86#             |
| Breastfed                          | -     | -                     | -     | -                     | -                      | -             | -             | -                     | -        | -                     | -     | -                     | -     | -                     | -     | -                     | -    | -                      |
| LAZ <sup>c</sup>                   |       |                       |       |                       |                        |               |               |                       |          |                       |       |                       |       |                       |       |                       |      |                        |
| <-2                                | -0.46 | -0.82;-0.11*          | -0.16 | -0.50;0.18            | -0.30                  | -0.65;0.05    | -0.17         | -0.59;0.26            | -0.15    | -0.59;0.30            | -0.02 | -0.47;0.42            | 0.29  | -0.11;0.70            | 0.02  | -0.48;0.52            | 0.28 | -0.19;0.74             |
| -2≤ and <-1                        | -0.21 | -0.51;0.08            | -0.19 | -0.48;0.10            | -0.03                  | -0.32;0.27    | -0.01         | -0.40;0.39            | -0.12    | -0.54;0.30            | 0.12  | -0.30,0.53            | 0.21  | -0.17;0.58            | 0.06  | -0.39;0.52            | 0.14 | -0.28;0.56             |
| $-1 \le$ and $< 0$                 | -0.07 | -0.35;0.20            | -0.03 | -0.31;0.25            | -0.04                  | -0.32:0.24    | 0.07          | -0.31;0.45            | 0.01     | -0.41;0.43            | 0.06  | -0.35;0.46            | 0.14  | -0.23;0.52            | 0.05  | -0.42;0.51            | 0.10 | -0.32:0.52             |
| $\geq 0$                           | -     | -                     | -     | -                     | - (                    | -             | -             | -                     | -        | -                     | -     | -                     | -     | -                     | -     | -                     | -    | -                      |
| WLZ <sup>d</sup>                   |       |                       |       |                       |                        |               |               |                       |          |                       |       |                       |       |                       |       |                       |      |                        |
| <-2                                | -4.06 | -4.34;-3.79*          | -1.94 | -2.36;-1.52*          | -2.12                  | -2.53;-1.72*  | <b>-3</b> .37 | -3.63;-3.11*          | -2.05    | -2.45,-1.65*          | -1.32 | -1.77;-0.87*          | 0.69  | 0.32; 1.07#           | -0.11 | -0.68;-0.46           | 0.80 | 0.20;1.40#             |
| -2≤ and <-1                        | -2.95 | -3.10;-2.80*          | -1.14 | -1.37;-0.90*          | -1.82                  | -2.09;-1.54*  | -2.39         | -2.60;-2.17*          | -1.47    | -1.80;-1.14*          | -0.91 | -1.31;-0.51*          | 0.56  | 0.30; 0.82#           | -0.34 | -0.73;0.06            | 0.90 | 0.43;1.38#             |
| $-1 \le$ and $\le 0$               | -1.83 | -1.95;-1.70*          | -0.70 | -0.88;-0.51*          | -1.13                  | -1.35;-0.91*  | -1.39         | -1.60;-1.17*          | -1.09    | -1.42;-0.77*          | -0.29 | -0.71;0.12            | 0.44  | 0.20; 0.67#           | -0.39 | -0.76;-0.03#          | 0.84 | 0.37;1.30#             |
| $\geq 0$                           | -     | -                     | -     | -                     | -                      | -             | -             |                       | -        | -                     | -     | -                     | -     | -                     | -     | -                     | -    | -                      |

BMI, Body mass index; FFMI, Fat-free mass index; FMI, Fat mass index, LAZ, Length-for-age Z, WLZ, Weight-for-length Z.

Separate linear mixed-effects models were fitted to BMI and FFMI. Age, sex, intervention groups of the original trial design, and the interaction between visit (6 or 15 months) and either \*sex, \*breastfeeding, \*LAZ or \*WLZ categories were included as fixed effects and children and municipality were included as random (intercept) effects. Estimates for FMI were derived from the corresponding estimates for BMI and FFMI (with error propagation).

Snl

\* Significantly different (p< 0.05) from the reference category.

# Significant interaction i.e., change in difference between 6 and 15 months (p<0.05).

|                                   |        | 6 n            | nonths |                   |        | 15 n           | nonths |                    | Interaction |                |                         |             |  |  |
|-----------------------------------|--------|----------------|--------|-------------------|--------|----------------|--------|--------------------|-------------|----------------|-------------------------|-------------|--|--|
|                                   | Tricep | s skinfold, mm | Subsca | pularis skinfold, | Tricep | s skinfold, mm | Subsca | apularis skinfold, | Tricep      | s skinfold, mm | Subscapularis skinfold, |             |  |  |
|                                   | -      |                |        | mm                |        |                |        | mm                 | -           |                |                         | mm          |  |  |
|                                   | В      | 95% CI         | В      | 95% CI            | В      | 95% CI         | В      | 95% CI             | В           | 95% CI         | В                       | 95% CI      |  |  |
| Sex <sup>a</sup>                  |        |                |        |                   |        |                |        |                    |             |                |                         |             |  |  |
| Boy                               | 0.13   | -0.05; 0.32    | 0.14   | -0.08;0.35        | 0.33   | 0.13; 0.53*    | 0.10   | -0.12;0.32         | 0.19        | -0.01; 0.39    | -0.03                   | -0.21;0.15  |  |  |
| Girl                              | -      | -              | -      | -                 | -      | -              | -      | -                  | -           | -              | -                       | -           |  |  |
| <b>Breastfeeding</b> <sup>b</sup> |        |                |        |                   |        |                |        |                    |             |                |                         |             |  |  |
| Not breastfed                     | -0.72  | -1.37; -0.08*  | -0.79  | -1.44;-0.15*      | -0.36  | -0.57;-0.15*   | -0.08  | -0.28;0.13         | 0.36        | -0.30;1.03     | 0.72                    | 0.06;1.38#  |  |  |
| Breastfed                         | -      | -              | -      | - <b>-</b>        | -      | -              | -      | -                  | -           | -              | -                       | -           |  |  |
| LAZ <sup>c</sup>                  |        |                |        |                   |        |                |        |                    |             |                |                         |             |  |  |
| <-2                               | -0.31  | -0.63; 0.009   | -0.41  | -0.74; -0.08*     | 0.004  | -0.39; 0.40    | -0.25  | -0.65; 0.15        | 0.31        | -0.11; 0.74    | 0.16                    | -0.23; 0.55 |  |  |
| -2< and <-1                       | -0.28  | -0.55; -0.01*  | -0.34  | -0.62; -0.06*     | 0.031  | -0.34; 0.40    | -0.15  | -0.52; 0.22        | 0.31        | -0.08; 0.71    | 0.19                    | -0.17; 0.55 |  |  |
| $-1 \le$ and $< 0$                | -0.16  | -0.41; 0.10    | -0.22  | -0.47; 0.04       | 0.10   | -0.26; 0.47    | -0.02  | -0.38; 0.34        | 0.25        | -0.14; 0.66    | 0.20                    | -0.16; 0.57 |  |  |
| $\geq 0$                          | -      | -              | -      | <u> </u>          |        | -              | -      | -                  | -           | -              | -                       | -           |  |  |
| WLZ <sup>d</sup>                  |        |                |        |                   |        |                |        |                    |             |                |                         |             |  |  |
| <-2                               | -1.28  | -1.70; -0.87*  | -1.99  | -2.38; -1.60*     | -1.02  | -1.41; -0.64*  | -1.74  | -2.10; -1.39*      | 0.26        | -0.27; -0.79   | 0.24                    | -0.23; 0.72 |  |  |
| $-2 \leq \text{and} \leq -1$      | -0.96  | -1.19; -0.73*  | -1.49  | -1.70; -1.27*     | -0.78  | -1.09; -0.46*  | -1.19  | -1.48; -0.90*      | 0.18        | -0.18; 0.55    | 0.29                    | -0.03; 0.62 |  |  |
| $-1 \leq \text{and} < 0$          | -0.65  | -0.84; -0.47*  | -0.92  | -1.09; -0.75*     | -0.29  | -0.60; 0.02    | -0.66  | -0.95; -0.38*      | 0.36        | 0.02; 0.71#    | 0.26                    | -0.05; 0.57 |  |  |
| >0                                | -      | -              | _      | _                 | -      |                | -      | -                  | -           | -              | -                       | -           |  |  |

**Table 3.** Estimated mean differences in triceps and subscapular skin folds within sex, breastfeeding, length-for-age and weight-for-length z-score categories among Cambodian children at 6 and 15 months of age. Data are regression coefficient (B) and 95% confidence interval (95% CI)

Linear mixed-effects models were fitted for triceps and subscapular skinfolds. Age, sex, intervention groups of the original trial design, and the interaction between visit (6 or 15 months) and either <sup>a</sup>sex, <sup>b</sup>breastfeeding, <sup>c</sup>length-for-age or <sup>d</sup>weight-for-age z-score categories were included as fixed effects and children and municipality were included as random (intercept) effects. \* Significantly different from the reference category (p < 0.05)

# Significant interaction