149 research outputs found

    3, 3′5 Triiodo L Thyronine Induces Apoptosis in Human Breast Cancer MCF-7cells, Repressing SMP30 Expression through Negative Thyroid Response Elements

    Get PDF
    Thyroid hormones regulate cell proliferation, differentiation as well as apoptosis. However molecular mechanism underlying apoptosis as a result of thyroid hormone signaling is poorly understood. The antiapoptotic role of Senescence Marker Protein-30 (SMP30) has been characterized in response to varieties of stimuli as well as in knock out model. Our earlier data suggest that thyroid hormone 3, 3'5 Triiodo L Thyronine (T(3)), represses SMP30 in rat liver.In highly metastatic MCF-7, human breast cancer cell line T3 treatment repressed SMP30 expression leading to enhanced apoptosis. Analysis by flow cytometry and other techniques revealed that overexpression and silencing of SMP30 in MCF-7 resulted in decelerated and accelerated apoptosis respectively. In order to identify the cis-acting elements involved in this regulation, we have analyzed hormone responsiveness of transiently transfected hSMP30 promoter deletion reporter vectors in MCF-7 cells. As opposed to the expected epigenetic outcome, thyroid hormone down regulated hSMP30 promoter activity despite enhanced recruitment of acetylated H3 on thyroid response elements (TREs). From the stand point of established epigenetic concept we have categorised these two TREs as negative response elements. Our attempt of siRNA mediated silencing of TRβ, reduced the fold of repression of SMP30 gene expression. In presence of thyroid hormone, Trichostatin- A (TSA), which is a Histone deacetylase (HDAC) inhibitor further inhibited SMP30 promoter activity. The above findings are in support of categorisation of both the thyroid response element as negative response elements as usually TSA should have reversed the repressions.This is the first report of novel mechanistic insights into the remarkable downregulation of SMP30 gene expression by thyroid hormone which in turn induces apoptosis in MCF-7 human breast cancer cells. We believe that our study represents a good ground for future effort to develop new therapeutic approaches to challenge the progression of breast cancer

    Dissecting the Relation between a Nuclear Receptor and GATA: Binding Affinity Studies of Thyroid Hormone Receptor and GATA2 on TSHβ Promoter

    Get PDF
    Background: Much is known about how genes regulated by nuclear receptors (NRs) are switched on in the presence of a ligand. However, the molecular mechanism for gene down-regulation by liganded NRs remains a conundrum. The interaction between two zinc-finger transcription factors, Nuclear Receptor and GATA, was described almost a decade ago as a strategy adopted by the cell to up-or down-regulate gene expression. More recently, cell-based assays have shown that the Zn-finger region of GATA2 (GATA2-Zf) has an important role in down-regulation of the thyrotropin gene (TSH beta) by liganded thyroid hormone receptor (TR). Methodology/Principal Findings: In an effort to better understand the mechanism that drives TSH beta down-regulation by a liganded TR and GATA2, we have carried out equilibrium binding assays using fluorescence anisotropy to study the interaction of recombinant TR and GATA2-Zf with regulatory elements present in the TSH beta promoter. Surprisingly, we observed that ligand (T3) weakens TR binding to a negative regulatory element (NRE) present in the TSH beta promoter. We also show that TR may interact with GATA2-Zf in the absence of ligand, but T3 is crucial for increasing the affinity of this complex for different GATA response elements (GATA-REs). Importantly, these results indicate that TR complex formation enhances DNA binding of the TR-GATA2 in a ligand-dependent manner. Conclusions: Our findings extend previous results obtained in vivo, further improving our understanding of how liganded nuclear receptors down-regulate gene transcription, with the cooperative binding of transcription factors to DNA forming the core of this process.Medical Research Council (MRC), UKConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazi

    Genetic Background of Prop1df Mutants Provides Remarkable Protection Against Hypothyroidism-Induced Hearing Impairment

    Get PDF
    Hypothyroidism is a cause of genetic and environmentally induced deafness. The sensitivity of cochlear development and function to thyroid hormone (TH) mandates understanding TH action in this sensory organ. Prop1df and Pou1f1dw mutant mice carry mutations in different pituitary transcription factors, each resulting in pituitary thyrotropin deficiency. Despite the same lack of detectable serum TH, these mutants have very different hearing abilities: Prop1df mutants are mildly affected, while Pou1f1dw mutants are completely deaf. Genetic studies show that this difference is attributable to the genetic backgrounds. Using embryo transfer, we discovered that factors intrinsic to the fetus are the major contributor to this difference, not maternal effects. We analyzed Prop1df mutants to identify processes in cochlear development that are disrupted in other hypothyroid animal models but protected in Prop1df mutants by the genetic background. The development of outer hair cell (OHC) function is delayed, but Prestin and KCNQ4 immunostaining appear normal in mature Prop1df mutants. The endocochlear potential and KCNJ10 immunostaining in the stria vascularis are indistinguishable from wild type, and no differences in neurofilament or synaptophysin staining are evident in Prop1df mutants. The synaptic vesicle protein otoferlin normally shifts expression from OHC to IHC as temporary afferent fibers beneath the OHC regress postnatally. Prop1df mutants exhibit persistent, abnormal expression of otoferlin in apical OHC, suggesting delayed maturation of synaptic function. Thus, the genetic background of Prop1df mutants is remarkably protective for most functions affected in other hypothyroid mice. The Prop1df mutant is an attractive model for identifying the genes that protect against deafness

    GATA2 Mediates Thyrotropin-Releasing Hormone-Induced Transcriptional Activation of the Thyrotropin β Gene

    Get PDF
    Thyrotropin-releasing hormone (TRH) activates not only the secretion of thyrotropin (TSH) but also the transcription of TSHβ and α-glycoprotein (αGSU) subunit genes. TSHβ expression is maintained by two transcription factors, Pit1 and GATA2, and is negatively regulated by thyroid hormone (T3). Our prior studies suggest that the main activator of the TSHβ gene is GATA2, not Pit1 or unliganded T3 receptor (TR). In previous studies on the mechanism of TRH-induced activation of the TSHβ gene, the involvements of Pit1 and TR have been investigated, but the role of GATA2 has not been clarified. Using kidney-derived CV1 cells and pituitary-derived GH3 and TαT1 cells, we demonstrate here that TRH signaling enhances GATA2-dependent activation of the TSHβ promoter and that TRH-induced activity is abolished by amino acid substitution in the GATA2-Zn finger domain or mutation of GATA-responsive element in the TSHβ gene. In CV1 cells transfected with TRH receptor expression plasmid, GATA2-dependent transactivation of αGSU and endothelin-1 promoters was enhanced by TRH. In the gel shift assay, TRH signal potentiated the DNA-binding capacity of GATA2. While inhibition by T3 is dominant over TRH-induced activation, unliganded TR or the putative negative T3-responsive element are not required for TRH-induced stimulation. Studies using GH3 cells showed that TRH-induced activity of the TSHβ promoter depends on protein kinase C but not the mitogen-activated protein kinase, suggesting that the signaling pathway is different from that in the prolactin gene. These results indicate that GATA2 is the principal mediator of the TRH signaling pathway in TSHβ expression

    Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis

    Get PDF
    The combined application of next-generation sequencing platforms has provided an economical approach to unlocking the potential of the turkey genome

    A global spectral library to characterize the world's soil

    Get PDF
    Soil provides ecosystem services, supports human health and habitation, stores carbon and regulates emissions of greenhouse gases. Unprecedented pressures on soil from degradation and urbanization are threatening agro-ecological balances and food security. It is important that we learn more about soil to sustainably manage and preserve it for future generations. To this end, we developed and analyzed a global soil visible-near infrared (vis-NIR) spectral library. It is currently the largest and most diverse database of its kind. We show that the information encoded in the spectra can describe soil composition and be associated to land cover and its global geographic distribution, which acts as a surrogate for global climate variability. We also show the usefulness of the global spectra for predicting soil attributes such as soil organic and inorganic carbon, clay, silt, sand and iron contents, cation exchange capacity, and pH. Using wavelets to treat the spectra, which were recorded in different laboratories using different spectrometers and methods, helped to improve the spectroscopic modelling. We found that modelling a diverse set of spectra with a machine learning algorithm can find the local relationships in the data to produce accurate predictions of soil properties. The spectroscopic models that we derived are parsimonious and robust, and using them we derived a harmonized global soil attribute dataset, which might serve to facilitate research on soil at the global scale. This spectroscopic approach should help to deal with the shortage of data on soil to better understand it and to meet the growing demand for information to assess and monitor soil at scales ranging from regional to global. New contributions to the library are encouraged so that this work and our collaboration might progress to develop a dynamic and easily updatable database with better global coverage. We hope that this work will reinvigorate our community's discussion towards larger, more coordinated collaborations. We also hope that use of the database will deepen our understanding of soil so that we might sustainably manage it and extend the research outcomes of the soil, earth and environmental sciences towards applications that we have not yet dreamed of
    corecore