540 research outputs found

    The role of thermophoretic effect in the formation of soot from liquid fuels

    Get PDF
    In order to rationalize soot formation in two-phase combustion, the related dynamics can be conveniently studied in simpler systems. In the latest twenty years, experimental activity in drop towers and in the outer space have allowed to investigate the combustion of isolated droplets in microgravity conditions, i.e. spherically symmetric systems where buoyancy effects and slip velocity are absent, yet still containing the major phenomena affecting real combustion (unsteady evolution, convection, gas and soot radiation, heterogeneous properties and so on). In such conditions, it had been speculated [1] that a key role in soot formation is played by thermophoretic effect, because of which solid particles are transported towards the droplet surface, thus increasing their residence times in the fuel-rich area, where soot growth is kinetically favoured. The spherical symmetry also allows to numerically study these systems with a relatively low computational weight. The importance of thermophoresis in the dynamics of soot formation can thus be investigated in a variety of operating conditions (droplet size, pressure, composition, etc.), which is the subject of this work. Starting from a description of the constitutive parts of the isolated-droplet model, the transient dynamics of soot formation in n-heptane droplets is analysed. The impact of the submodel describing thermophoresis is considered in detail, and indications about its possible refinements are provided

    Salinity dynamics under different water management plans coupled with sea level rise scenarios in the Red River Delta, Vietnam

    Get PDF
    In recent years, saltwater intrusion in river estuaries has become more severe and frequent worldwide. The common reasons lie in increasing freshwater withdrawal, river flow regulation and sea level rise due to global warming. In particular, the Red River Delta in northern Vietnam is facing a strong population growth worsening the pressure on freshwater resources for drinking water and irrigation needs. During the dry season, increasing conflicts and constraints in freshwater availability have already been experienced. Adverse combinations of river flow regulations and high sea levels lead to severe upstream propagations of salinity. This study takes advantage of a statistical characterization of discharges released from Hoa Binh reservoir and observed at Son Tay station, the main river flow control upstream of the river delta, along with downscaled and updated sea level rise sce- narios to estimate the future extents of saltwater intrusion under different options of water release from reser- voirs in the dry season. To do so, a 1D hydraulic model of the river delta network was implemented using MIKE11 software. The hydraulic and the quality modules were calibrated and validated with respect to the present scenario by using water stages and salinity concentrations observed in estuary branches. Sea level rise projections for 2050 and 2100 referred to RCP4.5 and RCP8.5 AR5 emission scenarios were then considered. Results show that river flow regulation can provide an effective mitigation measure. A 20–30% increase in the discharge released from the Son Tay station would be beneficial to push downstream the saltwater intrusion in the main Red River branch during the dry season. For instance, in 2050 the 1‰ salt concentration front is ex- pected to be pushed back at least 6 km when the exceeding probability of the discharge released by Son Tay station decreases from 95% to 25%

    Reliability of toxicokinetic modelling for PFAS exposure assessment in contaminated water in northern Italy

    Get PDF
    Introduction: Long-term contamination of tap water and groundwater by perfluoroalkyl and polyfluoroalkyl substances (PFASs) has been documented in the Veneto region of northern Italy. This study aimed to assess the exposure of individuals residing in the contaminated area and to test several toxicokinetic (TK) models of varying complexities to identify an efficient method for predicting perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) concentrations in human serum using observed data. The ultimate goal is to provide public health officials with guidance on selecting the appropriate TK model for specific contexts, a reliable and rapid tool to support human bio-monitoring (HBM) studies. Methods: Two simpler empirical TK models and a more complex multi-compartment physiologically based toxicokinetic (PBTK) model were compared with individual and aggregate data from an HBM study. In addition, the PBPK model was modified by adjusting input parameters and introducing new terms into the equations within the original model code. These modifications aimed to optimize the results compared to the original model, with some versions incorporating adjustments to account for the influence of menstruation in women. All models were evaluated to understand their strengths and weaknesses, providing guidance on the appropriate model to use according to specific scenarios. Results: The results obtained from the tested models were quite similar, with significant improvements observed only in the modified models. Simpler models also provided satisfactory results in scenarios involving low PFOS serum concentrations and recent exposure cessation. In many cases, predictions demonstrated high accuracy, particularly at the aggregate level and for women. Conclusions: These findings suggest that environmental protection agencies and health authorities may benefit from employing the tested models at the aggregate level as an initial step in HBM studies, rather than conducting more invasive and expensive screening campaigns

    Cross-sectional associations between air pollution and chronic bronchitis: an ESCAPE meta-analysis across five cohorts

    Get PDF
    BACKGROUND: This study aimed to assess associations of outdoor air pollution on prevalence of chronic bronchitis symptoms in adults in five cohort studies (Asthma-E3N, ECRHS, NSHD, SALIA, SAPALDIA) participating in the European Study of Cohorts for Air Pollution Effects (ESCAPE) project. METHODS: Annual average particulate matter (PM10, PM2.5, PMabsorbance, PMcoarse), NO2, nitrogen oxides (NOx) and road traffic measures modelled from ESCAPE measurement campaigns 2008-2011 were assigned to home address at most recent assessments (1998-2011). Symptoms examined were chronic bronchitis (cough and phlegm for ≥3 months of the year for ≥2 years), chronic cough (with/without phlegm) and chronic phlegm (with/without cough). Cohort-specific cross-sectional multivariable logistic regression analyses were conducted using common confounder sets (age, sex, smoking, interview season, education), followed by meta-analysis. RESULTS: 15 279 and 10 537 participants respectively were included in the main NO2 and PM analyses at assessments in 1998-2011. Overall, there were no statistically significant associations with any air pollutant or traffic exposure. Sensitivity analyses including in asthmatics only, females only or using back-extrapolated NO2 and PM10 for assessments in 1985-2002 (ECRHS, NSHD, SALIA, SAPALDIA) did not alter conclusions. In never-smokers, all associations were positive, but reached statistical significance only for chronic phlegm with PMcoarse OR 1.31 (1.05 to 1.64) per 5 µg/m(3) increase and PM10 with similar effect size. Sensitivity analyses of older cohorts showed increased risk of chronic cough with PM2.5abs (black carbon) exposures. CONCLUSIONS: Results do not show consistent associations between chronic bronchitis symptoms and current traffic-related air pollution in adult European populations

    Reproductive Strategy of the Giant Electric Ray in the Southern Gulf of California

    Get PDF
    The objective of the present study was to describe and characterize macroscopic and microscopic aspects of the reproductive biology of the Giant Electric Ray Narcine entemedor, a viviparous elasmobranch targeted by commercial fishers in Mexico. A total of 305 individual rays were captured (260 females, 45 males); all males were sexually mature. The median size at maturity for females was estimated to be 58.5 cm TL, the median size at pregnancy was 63.7 cm TL, and the median size at maternity was 66.2 cm TL. The range of ovarian follicles recorded per female was 1–69; the maximum ovarian fecundity of fully grown vitellogenic oocytes was 17, and uterine fecundity ranged from 1 to 24 embryos per female. The lengths of the oblong ovarian follicles varied significantly among months, and the largest ovarian follicles were found in July, August, and September. Median embryo size was largest in August, and the size at birth was between 12.4 and 14.5 cm TL. Histological evidence of secretions from the glandular tissue of the uterine villi indicate that this species probably has limited histotrophy as a reproductive mode. Vitellogenesis in the ovary occurred synchronously with gestation in the uterus. The Giant Electric Ray has a continuous annual reproductive cycle; a period of ovulation occurs between May and September and two peaks of parturition, one in January and one in August, occur, suggesting that embryonic diapause occurs in some individuals. These results provide useful information for the management of this important commercial species in Bahía de La Paz, Mexico, and will allow possible modification of the current Mexican regulations to enable better protection of this species

    A review of exposure assessment methods for epidemiological studies of health effects related to industrially contaminated sites

    Get PDF
    BACKGROUND: this paper is based upon work from COST Action ICSHNet. Health risks related to living close to industrially contaminated sites (ICSs) are a public concern. Toxicology-based risk assessment of single contaminants is the main approach to assess health risks, but epidemiological studies which investigate the relationships between exposure and health directly in the affected population have contributed important evidence. Limitations in exposure assessment have substantially contributed to uncertainty about associations found in epidemiological studies. OBJECTIVES: to examine exposure assessment methods that have been used in epidemiological studies on ICSs and to provide recommendations for improved exposure assessment in epidemiological studies by comparing exposure assessment methods in epidemiological studies and risk assessments. METHODS: after defining the multi-media framework of exposure related to ICSs, we discussed selected multi-media models applied in Europe. We provided an overview of exposure assessment in 54 epidemiological studies from a systematic review of hazardous waste sites; a systematic review of 41 epidemiological studies on incinerators and 52 additional studies on ICSs and health identified for this review. RESULTS: we identified 10 multi-media models used in Europe primarily for risk assessment. Recent models incorporated estimation of internal biomarker levels. Predictions of the models differ particularly for the routes ‘indoor air inhalation’ and ‘vegetable consumption’. Virtually all of the 54 hazardous waste studies used proximity indicators of exposure, based on municipality or zip code of residence (28 studies) or distance to a contaminated site (25 studies). One study used human biomonitoring. In virtually all epidemiological studies, actual land use was ignored. In the 52 additional studies on contaminated sites, proximity indicators were applied in 39 studies, air pollution dispersion modelling in 6 studies, and human biomonitoring in 9 studies. Exposure assessment in epidemiological studies on incinerators included indicators (presence of source in municipality and distance to the incinerator) and air dispersion modelling. Environmental multi-media modelling methods were not applied in any of the three groups of studies. CONCLUSIONS: recommendations for refined exposure assessment in epidemiological studies included the use of more sophisticated exposure metrics instead of simple proximity indicators where feasible, as distance from a source results in misclassification of exposure as it ignores key determinants of environmental fate and transport, source characteristics, land use, and human consumption behaviour. More validation studies using personal exposure or human biomonitoring are needed to assess misclassification of exposure. Exposure assessment should take more advantage of the detailed multi-media exposure assessment procedures developed for risk assessment. The use of indicators can be substantially improved by linking definition of zones of exposure to existing knowledge of extent of dispersion. Studies should incorporate more often land use and individual behaviour

    Mortality and morbidity among people living close to incinerators: a cohort study based on dispersion modeling for exposure assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have been conducted on the possible health effects for people living close to incinerators and well-conducted reviews are available. Nevertheless, several uncertainties limit the overall interpretation of the findings. We evaluated the health effects of emissions from two incinerators in a pilot cohort study.</p> <p>Methods</p> <p>The study area was defined as the 3.5 km radius around two incinerators located near Forlì (Italy). People who were residents in 1/1/1990, or subsequently became residents up to 31/12/2003, were enrolled in a longitudinal study (31,347 individuals). All the addresses were geocoded. Follow-up continued until 31/12/2003 by linking the mortality register, cancer registry and hospital admissions databases. Atmospheric Dispersion Model System (ADMS) software was used for exposure assessment; modelled concentration maps of heavy metals (annual average) were considered the indicators of exposure to atmospheric pollution from the incinerators, while concentration maps of nitrogen dioxide (NO<sub>2</sub>) were considered for exposure to other pollution sources. Age and area-based socioeconomic status adjusted rate ratios and 95% Confidence Intervals were estimated with Poisson regression, using the lowest exposure category to heavy metals as reference.</p> <p>Results</p> <p>The mortality and morbidity experience of the whole cohort did not differ from the regional population. In the internal analysis, no association between pollution exposure from the incinerators and all-cause and cause-specific mortality outcomes was observed in men, with the exception of colon cancer. Exposure to the incinerators was associated with cancer mortality among women, in particular for all cancer sites (RR for the highest exposure level = 1.47, 95% CI: 1.09, 1.99), stomach, colon, liver and breast cancer. No clear trend was detected for cancer incidence. No association was found for hospitalizations related to major diseases. NO<sub>2 </sub>levels, as a proxy from other pollution sources (traffic in particular), did not exert an important confounding role.</p> <p>Conclusions</p> <p>No increased risk of mortality and morbidity was found in the entire area. The internal analysis of the cohort based on dispersion modeling found excesses of mortality for some cancer types in the highest exposure categories, especially in women. The interpretation of the findings is limited given the pilot nature of the study.</p

    Residential greenspace and lung function decline over 20 years in a prospective cohort: the ECRHS study

    Get PDF
    Background The few studies that have examined associations between greenspace and lung function in adulthood have yielded conflicting results and none have examined whether the rate of lung function decline is affected. Objective We explored the association between residential greenspace and change in lung function over 20 years in 5559 adults from 22 centers in 11 countries participating in the population-based, international European Community Respiratory Health Survey. Methods Forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were measured by spirometry when participants were approximately 35 (1990–1994), 44 (1999–2003), and 55 (2010–2014) years old. Greenness was assessed as the mean Normalized Difference Vegetation Index (NDVI) in 500 m, 300 m, and 100 m circular buffers around the residential addresses at the time of lung function measurement. Green spaces were defined as the presence of agricultural, natural, or urban green spaces in a circular 300 m buffer. Associations of these greenspace parameters with the rate of lung function change were assessed using adjusted linear mixed effects regression models with random intercepts for subjects nested within centers. Sensitivity analyses considered air pollution exposures. Results A 0.2-increase (average interquartile range) in NDVI in the 500 m buffer was consistently associated with a faster decline in FVC (−1.25 mL/year [95% confidence interval: −2.18 to −0.33]). These associations were especially pronounced in females and those living in areas with low PM10 levels. We found no consistent associations with FEV1 and the FEV1/FVC ratio. Residing near forests or urban green spaces was associated with a faster decline in FEV1, while agricultural land and forests were related to a greater decline in FVC. Conclusions More residential greenspace was not associated with better lung function in middle-aged European adults. Instead, we observed slight but consistent declines in lung function parameters. The potentially detrimental association requires verification in future studies
    corecore