102 research outputs found

    Changes in the secretory profile of NSCLC-associated fibroblasts after ablative radiotherapy: potential impact on angiogenesis and tumor growth

    Get PDF
    In the context of radiotherapy, collateral effects of ablative ionizing radiation (AIR) on stromal components of tumors remains understudied. In this work, cancer-associated fibroblasts (CAFs) isolated from freshly resected human lung tumors were exposed to AIR (1x18Gy) and analyzed for their release of paracrine factors. Inflammatory mediators and regulators of angiogenesis and tumor growth were analyzed by multiplex protein assays in conditioned medium (CM) from irradiated and non-irradiated CAFs. Additionally, the profile of secreted proteins was examined by proteomics. In functional assays, effects of CAF-CM on proliferative and migratory capacity of lung tumor cells (H-520/H-522) and endothelial cells (HUVECs), and on the tube-forming capacity of endothelial cells was assessed. Our data show that exposure of CAFs to ablative doses of ionizing radiation results in a) down-regulated release of angiogenic factors SDF-1, angiopoietin and thrombospondin-2; b) up-regulated release of growth factor bFGF from most donors, and c) unaffected expression-levels of HGF and inflammatory mediators IL-6, IL-8, IL-1ƒÒ and TNF-£. Conditioned medium from irradiated and control CAFs did not affect differently the proliferative or migratory capacity of tumor cells (H-520/H-522), whereas migratory capacity of endothelial HUVEC cells was partially reduced in the presence of irradiated CAF conditioned medium. Overall we conclude that AIR mediates a transformation on the secretory profile of CAFs that could influence the behavior of other cells in the tumor tissue and hence guide to some extent therapeutic outcomes. The downstream consequences of the changes observed in this study merits further investigations

    Cancer-associated fibroblasts from human NSCLC survive ablative doses of radiation but their invasive capacity is reduced

    Get PDF
    <p>Background: Cancer-Associated Fibroblasts (CAFs) are significant components of solid malignancies and play central roles in cancer sustainability, invasion and metastasis. In this study we have investigated the invasive capacity and matrix remodelling properties of human lung CAFs after exposure to ablative doses of ionizing radiation (AIR), equivalent to single fractions delivered by stereotactic ablative radiotherapy (SART) for medically inoperable stage-I/II non-small-cell lung cancers.</p> <p>Methods: CAFs were isolated from lung tumour specimens from 16 donors. Initially, intrinsic radiosensitivity was evaluated by checking viability and extent of DNA-damage response (DDR) at different radiation doses. The migrative and invasive capacities of CAFs were thereafter determined after a sub-lethal single radiation dose of 18 Gy. To ascertain the mechanisms behind the altered invasive capacity of cells, expression of matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) were measured in the conditioned media several days post-irradiation, along with expression of cell surface integrins and dynamics of focal contacts by vinculin-staining.</p> <p>Results: Exposing CAFs to 1 × 18 Gy resulted in a potent induction of multiple nuclear DDR foci (> 9/cell) with little resolution after 120 h, induced premature cellular senescence and inhibition of the proliferative, migrative and invasive capacity. AIR promoted MMP-3 and inhibited MMP-1 appearance to some extent, but did not affect expression of other major MMPs. Furthermore, surface expression of integrins α2, β1 and α5 was consistently enhanced, and a dramatic augmentation and redistribution of focal contacts was observed.</p> <p>Conclusions: Our data indicate that ablative doses of radiation exert advantageous inhibitory effects on the proliferative, migratory and invasive capacity of lung CAFs. The reduced motility of irradiated CAFs might be a consequence of stabilized focal contacts via integrins.</p&gt

    GARP promotes the proliferation and therapeutic resistance of bone sarcoma cancer cells through the activation of TGF-β

    Get PDF
    Sarcomas are mesenchymal cancers with poor prognosis, representing about 20% of all solid malignancies in children, adolescents, and young adults. Radio- and chemoresistance are common features of sarcomas warranting the search for novel prognostic and predictive markers. GARP/LRRC32 is a TGF-β-activating protein that promotes immune escape and dissemination in various cancers. However, if GARP affects the tumorigenicity and treatment resistance of sarcomas is not known. We show that GARP is expressed by human osteo-, chondro-, and undifferentiated pleomorphic sarcomas and is associated with a significantly worse clinical prognosis. Silencing of GARP in bone sarcoma cell lines blocked their proliferation and induced apoptosis. In contrast, overexpression of GARP promoted their growth in vitro and in vivo and increased their resistance to DNA damage and cell death induced by etoposide, doxorubicin, and irradiation. Our data suggest that GARP could serve as a marker with therapeutic, prognostic, and predictive value in sarcoma. We propose that targeting GARP in bone sarcomas could reduce tumour burden while simultaneously improving the efficacy of chemo- and radiotherapy.Instituto de Salud Carlos IIIEuropean Union (EU) PI15/00794 PI18/00826 CPII15/00032 PI15/02015Junta de Andalucía C-0013-2018Spanish Government PEJ-2014-A-46314Agencia Estatal de Investigación (AEI) [MICINN/Fondo Europeo de Desarrollo Regional (FEDER)] SAF-2016-75286-RISCIII/FEDER [Miguel Servet Program] CPII16/00049ISCIII/FEDER [Sara Borrell Program] CD16/00103Servicio de Salud del Principado de Asturias, Instituto de Salud Carlos III PT17/0015/0023Fundación Bancaria Cajastur PT17/0015/0023ISCIII/FEDER [Consorcio CIBERONC] CB16/12/0039

    Intricate macrophage-colorectal cancer cell communication in response to radiation

    Get PDF
    Both cancer and tumour-associated host cells are exposed to ionizing radiation when a tumour is subjected to radiotherapy. Macrophages frequently constitute the most abundant tumour-associated immune population, playing a role in tumour progression and response to therapy. The present work aimed to evaluate the importance of macrophage-cancer cell communication in the cellular response to radiation. To address this question, we established monocultures and indirect co-cultures of human monocyte-derived macrophages with RKO or SW1463 colorectal cancer cells, which exhibit higher and lower radiation sensitivity, respectively. Mono- and co-cultures were then irradiated with 5 cumulative doses, in a similar fractionated scheme to that used during cancer patients' treatment (2 Gy/fraction/day). Our results demonstrated that macrophages sensitize RKO to radiation-induced apoptosis, while protecting SW1463 cells. Additionally, the co-culture with macrophages increased the mRNA expression of metabolism- and survival-related genes more in SW1463 than in RKO. The presence of macrophages also upregulated glucose transporter 1 expression in irradiated SW1463, but not in RKO cells. In addition, the influence of cancer cells on the expression of pro- and anti-inflammatory macrophage markers, upon radiation exposure, was also evaluated. In the presence of RKO or SW1463, irradiated macrophages exhibit higher levels of pro-inflammatory TNF, IL6, CCL2 and CCR7, and of anti-inflammatory CCL18. However, RKO cells induce an increase of macrophage pro-inflammatory IL1B, while SW1463 cells promote higher pro-inflammatory CXCL8 and CD80, and also anti-inflammatory VCAN and IL10 levels. Thus, our data demonstrated that macrophages and cancer cells mutually influence their response to radiation. Notably, conditioned medium from irradiated co-cultures increased non-irradiated RKO cell migration and invasion and did not impact on angiogenesis in a chicken embryo chorioallantoic membrane assay. Overall, the establishment of primary human macrophage-cancer cell co-cultures revealed an intricate cell communication in response to ionizing radiation, which should be considered when developing therapies adjuvant to radiotherapy

    Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities

    Get PDF
    In order to improve the efficacy of conventional radiotherapy, attention has been paid to immune cells, which not only modulate cancer cell response to therapy but are also highly recruited to tumours after irradiation. Particularly, the effect of ionizing radiation on macrophages, using therapeutically relevant doses, is not well understood. To evaluate how radiotherapy affects macrophage behaviour and macrophage-mediated cancer cell activity, human monocyte derived-macrophages were subjected, for a week, to cumulative ionizing radiation doses, as used during cancer treatment (2Gy/fraction/day). Irradiated macrophages remained viable and metabolically active, despite DNA damage. NF-kappaB transcription activation and increased Bcl-xL expression evidenced the promotion of pro-survival activity. A significant increase of pro-inflammatory macrophage markers CD80, CD86 and HLA-DR, but not CCR7, TNF and IL1B was observed after 10Gy cumulative doses, while anti-inflammatory markers CD163, MRC1, VCAN and IL-10 expression decreased, suggesting the modulation towards a more proinflammatory phenotype. Moreover, ionizing radiation induced macrophage morphological alterations and increased their phagocytic rate, without affecting matrix metalloproteases (MMP)2 and MMP9 activity. Importantly, irradiated macrophages promoted cancer cell-invasion and cancer cell-induced angiogenesis. Our work highlights macrophage ability to sustain cancer cell activities as a major concern that needs to be addressed to improve radiotherapy efficacy

    Feature analysis for discriminative confidence estimation in spoken term detection

    Get PDF
    This is the author’s version of a work that was accepted for publication in Computer Speech & Language. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Speech & Language, 28, 5, (2014) DOI: 10.1016/j.csl.2013.09.008Discriminative confidence based on multi-layer perceptrons (MLPs) and multiple features has shown significant advantage compared to the widely used lattice-based confidence in spoken term detection (STD). Although the MLP-based framework can handle any features derived from a multitude of sources, choosing all possible features may lead to over complex models and hence less generality. In this paper, we design an extensive set of features and analyze their contribution to STD individually and as a group. The main goal is to choose a small set of features that are sufficiently informative while keeping the model simple and generalizable. We employ two established models to conduct the analysis: one is linear regression which targets for the most relevant features and the other is logistic linear regression which targets for the most discriminative features. We find the most informative features are comprised of those derived from diverse sources (ASR decoding, duration and lexical properties) and the two models deliver highly consistent feature ranks. STD experiments on both English and Spanish data demonstrate significant performance gains with the proposed feature sets.This work has been partially supported by project PriorSPEECH (TEC2009-14719-C02-01) from the Spanish Ministry of Science and Innovation and by project MAV2VICMR (S2009/TIC-1542) from the Community of Madrid
    corecore