38 research outputs found

    Listening to Women’s Voices: Using an Adapted Photovoice Methodology to Access Their Emotional Responses to Diagnosis and Treatment of Breast Cancer

    Get PDF
    Introduction: The emotional impact of a diagnosis of breast cancer in women and listening to their affective needs is not widely reported in the literature. Recent policies globally emphasize the importance of incorporating patients’ views in treatment. The aim of the study was to provide insights for health care professionals and make recommendations based on patients’ experiences. Breast cancer survivorship is increasing, but the long-term support needs of such women are less understood. Method: This exploratory study asked 20 white women from 2 urban centers in the UK about their experience of diagnosis and treatment for breast cancer. It used an adaptation of the photovoice methodology to examine a health issue and identify issues of importance and relevance to patients. It recognizes their expertise in their situation. Results: The themes identified were: Fear/Shock; Waiting; Lack of Control; Communication/Practicalities; Body image changes; Specialist versus nonspecialist Centers/Staff; and Ongoing Support. Discussion: The women provided images, with a written summary of their meaning, and discussed them in groups. They identified good practice and suggestions for how to improve the experience of diagnosis and treatment of breast cancer. Conclusion: The photovoice methodology provides a low-cost, easy to implement a way for patients to provide insight into their experience and contribute their knowledge to improve clinical practice. Visual images and patients’ words allow clinicians to have greater insight into the environment and priorities of patients which could have implications for their response to treatment and long-term care

    Vascular endothelial growth factor-A165b is protective and restores endothelial glycocalyx in diabetic nephropathy

    Get PDF
    Diabetic nephropathy is the leading cause of ESRD in high-income countries and a growing problem across the world. Vascular endothelial growth factor-A (VEGF-A) is thought to be a critical mediator of vascular dysfunction in diabetic nephropathy, yet VEGF-A knockout and overexpression of angiogenic VEGF-A isoforms each worsen diabetic nephropathy. We examined the vasculoprotective effects of the VEGF-A isoform VEGF-A165b in diabetic nephropathy. Renal expression of VEGF-A165b mRNA was upregulated in diabetic individuals with well preserved kidney function, but not in those with progressive disease. Reproducing this VEGF-A165b upregulation in mouse podocytes in vivo prevented functional and histologic abnormalities in diabetic nephropathy. Biweekly systemic injections of recombinant human VEGF-A165b reduced features of diabetic nephropathy when initiated during early or advanced nephropathy in a model of type 1 diabetes and when initiated during early nephropathy in a model of type 2 diabetes. VEGF-A165b normalized glomerular permeability through phosphorylation of VEGF receptor 2 in glomerular endothelial cells, and reversed diabetes-induced damage to the glomerular endothelial glycocalyx. VEGF-A165b also improved the permeability function of isolated diabetic human glomeruli. These results show that VEGF-A165b acts via the endothelium to protect blood vessels and ameliorate diabetic nephropathy

    Understanding the environmental impacts of large fissure eruptions: Aerosol and gas emissions from the 2014-2015 Holuhraun eruption (Iceland)

    Get PDF
    The 2014-2015 Holuhraun eruption in Iceland, emitted ~11 Tg of SO2 into the troposphere over 6 months, and caused one of the most intense and widespread volcanogenic air pollution events in centuries. This study provides a number of source terms for characterisation of plumes in large fissure eruptions, in Iceland and elsewhere. We characterised the chemistry of aerosol particle matter (PM) and gas in the Holuhraun plume, and its evolution as the plume dispersed, both via measurements and modelling. The plume was sampled at the eruptive vent, and in two populated areas in Iceland. The plume caused repeated air pollution events, exceeding hourly air quality standards (350 µg/m3) for SO2 on 88 occasions in Reykjahlíð town (100 km distance), and 34 occasions in Reykjavík capital area (250 km distance). Average daily concentration of volcanogenic PM sulphate exceeded 5 µg/m3 on 30 days in Reykjavík capital area, which is the maximum concentration measured during non-eruptive background interval. There are currently no established air quality standards for sulphate. Combining the results from direct sampling and dispersion modelling, we identified two types of plume impacting the downwind populated areas. The first type was characterised by high concentrations of both SO2 and S-bearing PM, with a high Sgas/SPM mass ratio (SO2(g)/SO42-(PM) >10). The second type had a low Sgas/SPM ratio (<10). We suggest that this second type was a mature plume where sulphur had undergone significant gas-to-aerosol conversion in the atmosphere. Both types of plume were rich in fine aerosol (predominantly PM1 and PM2.5), sulphate (on average ~90% of the PM mass) and various trace species, including heavy metals. The fine size of the volcanic PM mass (75-80% in PM2.5), and the high environmental lability of its chemical components have potential adverse implications for environmental and health impacts. However, only the dispersion of volcanic SO2 was forecast in public warnings and operationally monitored during the eruption. We make a recommendation that sulphur gas-to-aerosol conversion processes, and a sufficiently large model domain to contain the transport of a tropospheric plume on the timescale of days be utilized for public health and environmental impact forecasting in future eruptions in Iceland and elsewhere in the world

    A somatic coliphage threshold approach to improve the management of activated sludge wastewater treatment plant effluents in resource-limited regions

    Get PDF
    Versión aceptada para publicaciónEffective wastewater management is crucial to ensure the safety of water reuse projects and 29 effluent discharge into surface waters. Multiple studies have demonstrated that municipal 30 wastewater treatment with conventional activated sludge processes is inefficient for the removal 31 of the wide spectrum of viruses in sewage. In this study, a well-accepted statistical approach was 32 used to investigate the relationship between viral indicators and human enteric viruses during 33 wastewater treatment in a resource-limited region. Influent and effluent samples from five urban 34 wastewater treatment plants (WWTP) in Costa Rica were analyzed for somatic coliphage and 35 human enterovirus, hepatitis A virus, norovirus genotype I and II, and rotavirus. All WWTP 36 provide primary treatment followed by conventional activated sludge treatment prior to 37 discharge into surface waters that are indirectly used for agricultural irrigation. The results 38 revealed a statistically significant relationship between the detection of at least one of the five 39 human enteric viruses and somatic coliphage. Multiple logistic regression and Receiver Operating Characteristic curve analysis identified a threshold of 3.0 ×103 40 (3.5-log10) somatic 41 coliphage plaque forming unit per 100 mL, which corresponded to an increased likelihood of encountering enteric viruses above the limit of detection (>1.83×102 42 virus target/100 mL). 43 Additionally, quantitative microbial risk assessment was executed for famers indirectly reusing 44 WWTP effluent that met the proposed threshold. The resulting estimated median cumulative 45 annual disease burden complied with World Health Organization recommendations. Future 46 studies are needed to validate the proposed threshold for use in Costa Rica and other regions.Universidad de Costa Rica/[]/UCR/Costa RicaNational Science Foundation/[OCE-1566562]/NSF/Estados UnidosUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto de Investigaciones en Salud (INISA)UCR::Vicerrectoría de Docencia::Salud::Facultad de Microbiologí

    The Maternally Expressed WRKY Transcription Factor TTG2 Controls Lethality in Interploidy Crosses of Arabidopsis

    Get PDF
    The molecular mechanisms underlying lethality of F1 hybrids between diverged parents are one target of speciation research. Crosses between diploid and tetraploid individuals of the same genotype can result in F1 lethality, and this dosage-sensitive incompatibility plays a role in polyploid speciation. We have identified variation in F1 lethality in interploidy crosses of Arabidopsis thaliana and determined the genetic architecture of the maternally expressed variation via QTL mapping. A single large-effect QTL, DR. STRANGELOVE 1 (DSL1), was identified as well as two QTL with epistatic relationships to DSL1. DSL1 affects the rate of postzygotic lethality via expression in the maternal sporophyte. Fine mapping placed DSL1 in an interval encoding the maternal effect transcription factor TTG2. Maternal parents carrying loss-of-function mutations in TTG2 suppressed the F1 lethality caused by paternal excess interploidy crosses. The frequency of cellularization in the endosperm was similarly affected by both natural variation and ttg2 loss-of-function mutants. The simple genetic basis of the natural variation and effects of single-gene mutations suggests that F1 lethality in polyploids could evolve rapidly. Furthermore, the role of the sporophytically active TTG2 gene in interploidy crosses indicates that the developmental programming of the mother regulates the viability of interploidy hybrid offspring

    Hearts and Minds: Mental Health Support for schools

    Get PDF
    Hearts and Minds is a collection of generic mental health case studies written by students at the University of Southern Queensland. The mental health concerns focus on those typically experienced within schools and include Anxiety, Autism Spectrum Disorder, Attention Deficit Hyperactivity Disorder, Depression, Post-Traumatic Stress Disorder and Suicidal Ideation

    Environment and local substrate availability effects on harem formation in a polygynous bark beetle

    Full text link
    Many forms of polygyny are observed across different animal groups. In some species, groups of females may remain with a single male for breeding, often referred to as &ldquo;harem polygyny&rdquo;. The environment and the amount of habitat available for feeding, mating and oviposition may have an effect on the formation of harems. We aimed to determine how the surrounding environment (a harvested or unharvested pine plantation) and availability of local substrate affect the harems of the bark beetle, Ips grandicollis (Coleoptera: Curculionidae: Scolytinae). In a harvested pine plantation with large amounts of available habitat, the population density of these beetles is much higher than in unharvested plantations. We found the number of females per male to be significantly greater in the harvested plantation than the unharvested one. Additionally, the amount of substrate available in the immediate local vicinity (the number of logs in replicate piles) also influences the number of beetles attracted to a log and size of individual harems. We also examined how females were distributing themselves in their galleries around the males&rsquo; nuptial chamber, as previous work has demonstrated the potential for competition between neighbouring females and their offspring. Females do not perform clumping, suggesting some avoidance when females make their galleries, but they also do not distribute themselves evenly. Female distribution around the male&rsquo;s nuptial chamber appears to be random, and not influenced by other females or external conditions

    Insect harem polygyny: when is a harem not a harem?

    Full text link
    corecore