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Abstract 27 

Effective wastewater management is crucial to ensure the safety of water reuse projects and 28 

effluent discharge into surface waters. Multiple studies have demonstrated that municipal 29 

wastewater treatment with conventional activated sludge processes is inefficient for the removal 30 

of the wide spectrum of viruses in sewage. In this study, a well-accepted statistical approach was 31 

used to investigate the relationship between viral indicators and human enteric viruses during 32 

wastewater treatment in a resource-limited region. Influent and effluent samples from five urban 33 

wastewater treatment plants (WWTP) in Costa Rica were analyzed for somatic coliphage and 34 

human enterovirus, hepatitis A virus, norovirus genotype I and II, and rotavirus. All WWTP 35 

provide primary treatment followed by conventional activated sludge treatment prior to 36 

discharge into surface waters that are indirectly used for agricultural irrigation. The results 37 

revealed a statistically significant relationship between the detection of at least one of the five 38 

human enteric viruses and somatic coliphage. Multiple logistic regression and Receiver 39 

Operating Characteristic curve analysis identified a threshold of 3.0 ×10
3
 (3.5-log10) somatic 40 

coliphage plaque forming unit per 100 mL, which corresponded to an increased likelihood of 41 

encountering enteric viruses above the limit of detection (>1.83×10
2
 virus target/100 mL). 42 

Additionally, quantitative microbial risk assessment was executed for famers indirectly reusing 43 

WWTP effluent that met the proposed threshold. The resulting estimated median cumulative 44 

annual disease burden complied with World Health Organization recommendations. Future 45 

studies are needed to validate the proposed threshold for use in Costa Rica and other regions.   46 
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Importance 47 

Effective wastewater management is crucial to ensure safe direct and indirect water 48 

reuse; nevertheless, few countries have adopted the virus log reduction value management 49 

approach established by the World Health Organization. In this study, we investigated an 50 

alternative and/or complementary approach to the virus log reduction value framework for the 51 

indirect reuse of activated sludge treated wastewater effluent. Specifically, we employed a 52 

well-accepted statistical approach to identify a statistically sound somatic coliphage threshold 53 

value, which corresponded to an increased likelihood of human enteric virus detection. This 54 

study demonstrates an alternative approach to the virus log reduction value framework, which 55 

can be applied to improve wastewater reuse practices and effluent management.  56 
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1. Introduction 58 

Conventional activated sludge is an aerobic, secondary wastewater treatment technology 59 

that takes advantage of biological processes to remove organic matter and is commonly used in 60 

low-, middle- and high-income countries (1). Frequently, activated sludge wastewater treatment 61 

plant (WWTP) effluent does not receive additional treatment, even though it is well-known that 62 

pathogen removal can be insufficient for safe water reuse (2–9). This is particularly true for 63 

enteric viruses because traditional activated sludge treatment typically removes viruses 2.02-64 

log10 (1, 10).  Currently, human enteric viruses cause a significant fraction of the disease burden 65 

related to wastewater pollution worldwide. Direct and indirect wastewater reuse (e.g., 66 

agricultural irrigation, recreational activities in contaminated surface waters) represents a public 67 

health risk; thus, the microbial quality of WWTP effluent should be monitored to manage those 68 

risks (11, 12).  69 

Fecal indicator bacteria (e.g., fecal coliform, enterococci, and Escherichia coli) are the 70 

most commonly used indicators for assessing WWTP effluent microbial quality (13). They were 71 

initially introduced as indicators when Salmonella Typhi was the principal pathogen of concern. 72 

Despite their effectiveness for indicating bacterial pathogens, several studies have demonstrated 73 

that fecal indicator bacteria did not correlate with enteric viruses in WWTP effluent (14–17). 74 

Furthermore, high enteric virus concentrations were detected when fecal indicator bacteria 75 

concentrations were low.  76 

While fecal indicator bacteria are not useful viral indicators of wastewater treatment 77 

processes (18, 19), country-specific legislation concerning WWTP effluent reuse and discharge 78 

frequently rely on fecal indicator bacteria (13). No universally accepted viral indicator or criteria 79 

exists to date (10). Some governments now include viral indicators, either human reference viral 80 
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pathogens, somatic coliphage or F+ coliphage, to determine WWTP virus reductions 81 

(summarized in (7)). Meta-analyses conducted in wastewater matrices report bacteriophages, 82 

particularly somatic coliphage, as good surrogates of human enteric viruses because of their 83 

similar characteristics, high concentrations, and low-cost methods that distinguish infectious 84 

viruses (10, 20, 21) 85 

Currently, the World Health Organization (WHO) recommends a multiple-barrier 86 

approach to managing WWTP effluent, in which a reference human enteric virus log reduction 87 

value is associated with each treatment process (13). Practitioners define the physical and 88 

chemical conditions that achieve the target virus log reduction value, and then assume that the 89 

log reduction value remains constant if the physical-chemical conditions do not change (22). 90 

While this approach was accepted among experts, most countries in the world have yet to apply 91 

this management approach for a variety of reasons (7). Even though routine monitoring is not 92 

required if physical-chemical conditions remain constant, this log reduction value effluent 93 

management approach has been met with resistance in many countries because it is difficult to 94 

implement into practice given that it is not a threshold value. 95 

Additionally, the reference human enteric virus analyses required to identify the 96 

conditions associated with a target log reduction value are not feasible for many municipal 97 

WWTPs in high-income settings, let alone feasible in middle- and low-income contexts. They 98 

require expertise and sophisticated laboratory equipment, are time consuming, costly, and enteric 99 

virus concentrations are frequently below detectable concentrations (4, 22–24). Furthermore, 100 

these reference pathogen analyses are typically executed using molecular methods, which cannot 101 

distinguish infectious and non-infectious viruses (7, 23, 25). Even though some countries’ 102 

legislation focuses on reference enteric virus log reduction values, somatic and F+ coliphage 103 
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have also been used in the log reduction value management framework (10, 11, 26).  Regardless 104 

of the human enteric reference virus or indicator used, the log reduction value management 105 

framework has been criticized for not effectively protecting public health because it focuses on 106 

removal and disregards the variability of human enteric virus concentrations in WWTP influent. 107 

Consequently, additional 2-3-log10 removal can be needed to ensure safe WWTP discharge and 108 

reuse, even if log reduction value targets are met (4). 109 

Prior to the virus log reduction value management approach two decades ago, a somatic 110 

coliphage threshold (3-log10 PFU/100 mL) associated with infectious enterovirus concentrations 111 

was proposed to better manage WWTP effluent discharges (20). However, this threshold value 112 

was never applied to management and needs to be re-calculated because it is based on a non-113 

robust statistical approach and considers just one human enteric virus (27). Given the difficulties 114 

and disadvantages associated with applying the virus log reduction value management approach, 115 

the objective of this study was to determine a statistically-sound, robust somatic coliphage 116 

concentration threshold useful for monitoring WWTP effluents.  117 

To demonstrate this approach, somatic coliphage and enteric viruses were monitored at 118 

five activated sludge WWTPs in the San José Metropolitan Area, Costa Rica. The human enteric 119 

virus included in this study were human enterovirus (EV), hepatitis A virus (HAV), norovirus 120 

genotype I and II (NoVGI and NoVGII), and rotavirus group A (RV) because they are an 121 

important cause of outbreaks and diarrheal illness in Costa Rica (28, 29). Data were analyzed 122 

using the most-accepted, robust statistical methods (multiple logistic regression models and 123 

receiver operating characteristics (ROC) curves (27, 30, 31) to establish a useful threshold that 124 

corresponds to the minimum somatic coliphage concentration associated with increased human 125 

enteric virus detection. Since Costa Rican domestic WWTP effluent is currently managed using 126 
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fecal coliform concentration thresholds that vary based upon potential wastewater reuse 127 

activities, fecal coliforms were also monitored simultaneously and similar statistical analyses 128 

were executed to compare the current bacterial indicator with the proposed viral indicator. 129 

Finally, quantitative microbial risk assessment was used to estimate the annual disease burden 130 

associated with indirectly irrigating with WWTP effluent that met the proposed somatic 131 

coliphage threshold. 132 

 133 

2. Materials and Methods 134 

 135 

2.1 Wastewater treatment plant sample collection 136 

A total of 119, 1.5 L influent (n = 60) and effluent (n = 59) samples were collected from 137 

five urban WWTPs located in the San José Metropolitan Area, Costa Rica (Figure 1) All of the 138 

WWTPs are small in size (i.e., treating waste from 123 to 1033 inhabitants and only receive 139 

domestic wastewater) (5, 6, 32). They consist of primary treatment followed by secondary 140 

treatment via conventional activated sludge processes. The WWTP effluents are discharged into 141 

the Virilla River, which are also source water for agricultural irrigation. None of these 142 

wastewater treatment facilities disinfect effluent prior to surface water discharge. Since this 143 

study was executed in a tropical country, there are two seasons: (1) the dry season from 144 

December through April and (2) the rainy season from May through November. In order to 145 

account for seasonal differences in weather and human enteric virus seasonality, grab samples 146 

were collected from each WWTP between 9:00 a.m. and 12:00 p.m. on three consecutive days, 147 

for each of the following months in 2013: March, May, October, and December. All samples 148 

were collected in sterile, amber bottles and maintained at 4 °C until processed. All samples were 149 
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analyzed for somatic coliphages and fecal coliform concentrations. Presence/absence analyses 150 

for the following human enteric viruses were carried out on a subset of samples using PCR-based 151 

methods: EV (n = 117), HAV (n = 117), norovirus GI (NoVGI; n = 72) and GII (NoVGII; n = 152 

72); and RV (n = 79).  153 

 154 

2.2 Fecal coliform analyses 155 

Fecal coliforms most probable number (MPN) concentrations were determined by 156 

multiple- tube fermentation (MPN/100 mL) according to Method 9221E within 8 h of collection 157 

(33). Briefly, all samples were inoculated in a series of five tubes with lauryl sulfate broth, in 158 

which the WWTP influent and effluent samples were serially diluted to a concentration of 159 

1:1,000,000 and 1:100,000, respectively, prior to inoculation. Confirmation was executed after 160 

48 ± 4 h of incubation at 35 °C, an inoculum of each tube with bacterial growth and gas were 161 

transferred to EC-MUG broth and were incubated for 24 ± 2 h at 44.5 °C; tubes positive for fecal 162 

coliforms had bacterial growth and gas characteristics. A positive control (E. coli ATCC 25922), 163 

a negative control (Salmonella spp. ATCC 13076), and a blank (containing the dilution buffer as 164 

inoculate) were analyzed alongside all samples. No contamination was observed, and all positive 165 

and negative controls generated positive and negative results, respectively. 166 

 167 

2.3 Wastewater Pre-treament for virus isolation and concentration 168 

 All samples were pre-filtered with a metal sieve (0.15 mm pore) in order to break up 169 

large organic particles. Viruses were concentrated in accordance with, and following, the 170 

Standard Methods for the Examination Water and Wastewater (Section 9510C; (33)). Briefly, the 171 

pre-filtered wastewater sample (1.25 L) was successively filtered through three filters pretreated 172 
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with 3% beef extract (pH 7.2; Oxoid
®

, United Kingdom) to remove larger particles and prevent 173 

viruses from sticking to the filters: (1) 47 mm, 80 µm glass fiber filter (13400-47-Q; Sartorius
®

, 174 

Germany); (2) 47 mm, 1.2 µm nitrate cellulose filter (11303-47-N; Sartorius
®

, Germany); and 175 

(3) 47 mm, 0.4 µm acetate cellulose filter (11106-47-ACN; Sartorius
®

, Germany). This filtrate 176 

was divided into two parts: 250 mL for somatic coliphage analyses and 1 L for enteric virus 177 

analyses. With the exception of the somatic coliphage analyses for WWTP effluent, the filtrate 178 

was stored at -70 ºC prior to human enteric virus concentration and WWTP influent somatic 179 

coliphage quantification. 180 

 181 

2.4 Human enteric virus concentration and detection 182 

One liter of filtered WWTP influent and effluent was concentrated using a modified 183 

adsorption-elution method (Method 9510B) (33). Sample pH was adjusted to 3.5 with HCl (0.1 184 

N) and filtered with 47 -mm, 0.2 -nm cellulose acetate filter (1110tr-47N Sartorius
®

, Germany) 185 

to adsorb the viruses onto the filter; approximately three filters were used for each sample in 186 

order to filter the entire 1 -L sample. Subsequently, the viruses were eluted off the filter(s) with 187 

15 mL beef extract 3% pH 9.0. All eluate was collected and precipitated at 4 ºC with PEG8000 188 

and 17.5 g/L NaCl (34). The final virus concentrates (0.5 ml) were stored at -70 °C prior to RNA 189 

purification. The concentration efficiency of this method ranged between 40% - 90% in previous 190 

studies (33, 35). It was also tested with a poliovirus vaccine strain (Sabin vaccine strain), in 191 

which the concentration of the original and concentrated samples were determined using the 192 

Dulbecco plates method (36) with Hep-2 cells. The concentrated sample was 1-log10 more 193 

concentrated in comparison to the original sample (data not shown).  194 
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Viral RNA (50 μl) was obtained from the entire final virus concentrate (0.5 ml) using the 195 

NucleoSpin RNA Virus kit (Macherey Nagel
®

, Germany) and cDNA (20 μl) was synthesized 196 

from 8.0 μl viral RNA using the RevertAid
TM 

H Minus First Strand cDNA Synthesis kit with 197 

random hexamers (Thermo Scientific®, USA), both following the manufacturer’s instructions. 198 

Presence/absence analyses for the following human enteric viruses were carried out on a subset 199 

of samples using reverse transcriptase polymerase chain reaction (RT-PCR)-based methods and 200 

previously published assays and conditions (Table 1; (37–40): enterovirus (EV; n = 117), 201 

hepatitis A virus (HAV; n = 117), norovirus GI (NoVGI; n = 72) and GII (NoVGII; n = 72), and 202 

rotavirus group A (RV; n = 79). Presence-absence human enteric virus data were generated in 203 

this study because previous studies demonstrated a better correlation between enteric virus 204 

presence/absence and coliphages in comparison with correlations with quantitative enteric virus 205 

data (27, 41). All RT-PCR-based analyses were executed using Master Mix 2X (Fermentas®, 206 

USA) with a final reaction volume of 25 μL.  207 

For the end-point RT-PCR assays (EV and HAV), the Applied BioSystem® Veriti 9902 208 

thermocycler was used. A sample was identified as positive when PCR products with the 209 

anticipated size (EV, 113 bp; HAV, 266 bp) were visualized using 2% agarose gel 210 

electrophoresis with GelRed®. For NoVGI, NoVGII, and RV presence/absence was determined 211 

using RT-quantitative PCR (RT-qPCR) with a StepOne Real-Time PCR thermocycler (Applied 212 

Biosystems®). A sample was identified as positive if the Cq value was less than 35. For samples 213 

with a Cq value greater than 35 and less than 40, the sample was re-run and all samples with 214 

mean Cq values ≤ 35 were classified as positive.  215 

In addition to a negative control (sterile water), the following positive controls, specific to 216 

each assay, were used for each instrument run: RV-, NoVGI-, and NoVGII-positive fecal 217 
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samples (Costa Rican National Children’s Hospital), the Sabin 1 (NIBSC 1/528) vaccine strain 218 

for EV (University of Costa Rica, Department of Microbiology, Virology Section), and HAX-70 219 

strain for HAV (University of Costa Rica, Department of Microbiology, Virology Section). All 220 

positive controls yielded positive results and all negative controls were negative. The enteric 221 

virus theoretical process detection limit (copies/100 mL)
 
was back-calculated using the following 222 

equation, which took into account the efficiency published for each step in the molecular 223 

analyses as well as the concentration methods used (Eq. 1): 224 

𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 
𝑐𝑜𝑝𝑖𝑒𝑠

𝑚𝑙
=  

𝑐

𝑣1 
×

𝑉1

𝐸1
×

𝑉2

𝑣2 × 𝐸2
×

𝑉3

𝑣3
×

𝑉4

𝑣4
×

1

𝑉5 × 𝐸3 
 

where c equals copies that could be detected per RT-qPCR reaction (i.e., lowest copy number 225 

detected divided by 2 (difference between double-stranded standard curve material and single-226 

stranded viral RNA)); v1 equals the volume of cDNA added to the qPCR reaction (5 µl); V1 227 

equals the total volume of cDNA synthesized (20 µl); E1 equals the worst-case RT efficiency 228 

previously reported (19%; (42)); v2 equals the volume of RNA in the RT reaction (8 µl); V2 229 

equals the total volume of RNA purified (50 µl); E2 equals the worst-case viral RNA purification 230 

efficiency (90%; (43));  v3 equals the volume of  PEG concentrate that RNA was purified from 231 

(500 µl); V3 equals the total volume of PEG concentrate (500 µl); v4 equals the eluate volume 232 

that was PEG concentrated (45 mL); V4 equals the total volume of eluate (45 mL); V5 equals the 233 

total volume of wastewater (1000 mL); and E3 equals the estimated virus concentration 234 

efficiency (40%; (35)). The limit of detection for the assays could have been as few as 10 copies 235 

(J. Nordgren, personal communication) and great as 1,000 copies (37, 38). Since the limit of 236 

detection of each assay was not tested in this study, the limit of detection (c) was defined as 10 237 

copies and 1,000 copies. Thus, the theoretical process limit of enteric virus detection for any 238 

given assay was estimated to range from 183 virus copies/100 mL to 18,300 copies/100 mL. 239 
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 240 

2.5 Somatic coliphage quantification  241 

Somatic coliphage concentrations were determined according to Methods 9924B Somatic 242 

Coliphage Assay and 9924E Single-Agar-Layer Method with modifications: 250 mL sample 243 

volumes were filtered with 0.2 μm filter (cellulose acetate, 11107- 91 47N Sartorius
®

, Germany) 244 

that was pretreated with 3% beef extract pH 7.2 (33, 44). Somatic coliphage concentrations were 245 

identified in WWTP effluent samples using single-layer plaque assay (undiluted sample) and in 246 

WWTP influent samples using double-layer plaque assay (1:10,000 serial-dilution of sample). 247 

Analyses used the host strain E. coli ATCC 13706. Positive (PhiX174 ATCC 13706-B1 phage) 248 

and negative (buffer only) controls were run alongside samples. No contamination was observed, 249 

and all controls gave anticipated results. 250 

 251 

2.6 Data analyses: statistics and indicator concentration threshold evaluation 252 

Descriptive statistics (mean and standard deviation) and comparative (two-group 253 

comparisons) analyses were executed using R’ Version 3.5.3 (www.rproject.org) with the 254 

appropriate methods for non-parametric uncensored, as well as right-, and left-censored data 255 

from the NADA package (45).  Mean and standard deviation were calculated for somatic 256 

coliphages for WWTP influent, and excluded WWTP influent concentrations that were 5-log10 257 

PFU/100 mL below the average (n = 31). These data were excluded because somatic coliphage 258 

were analyzed with culture-based analyses that were likely inhibited by high concentrations of 259 

household disinfectants (46).  260 

The mean and standard deviation were estimated using the Kaplan Meir method for the 261 

following censored data: somatic coliphage WWTP effluent, and fecal coliforms WWTP influent 262 
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and effluent. All somatic coliphage WWTP effluent concentrations below the detection limits 263 

(<1 PFU/ 100 mL; e.g. left-censored) were conservatively censored to 0.9 PFU/ 100 mL (n = 8). 264 

All fecal coliforms concentrations greater than the method detection limits (e.g., right-censored) 265 

were censored to one plus the highest detectable concentration (i.e., > 8.2-log10 MPN/ 100 mL 266 

for WWTP influent (n = 22) and > 6.2-log10 MPN/ 100 mL for WWTP effluent (n = 11)). The 267 

Peto-Prentice test is a non-parametric analysis that is appropriate for censored data. It was used 268 

to test the null hypotheses that there was no significant difference in indicator concentrations 269 

(somatic coliphage or fecal coliform) between WWTP influents, WWTP effluents, and WWTP 270 

influent and effluents combined.  271 

In order to calculate an indicator threshold concentration that corresponds to human 272 

enteric virus detection, multiple logistic regression models were created to determine the 273 

statistical significance and association between each indicator and any human enteric virus 274 

detection for WWTP influent and effluent (41). The positive classification for human enteric 275 

virus detection was based upon the detection of any of the five viruses, which reflects the 276 

existence of a public health risk if any one of the viruses are detected, and was previously 277 

recommended for this type of analysis (27). The multiple logistic regression model equation was 278 

defined as (Eq. 2): 279 

ln (
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽1𝜒1 + 𝛽2𝜒2 

where p was human enteric virus detection (PCR positive/negative; dependent and dichotomic 280 

variable), β0 was the intercept, β1 and β2 were the regression parameters, χ1 was the indicator 281 

(either somatic coliphage or fecal coliforms) concentration, and χ2 was the dichotomic variable 282 

for season. Analyses were conducted for WWTP influent and effluent separately. The specific 283 

WWTP was a controlled factor in the model. Chi-square and unpaired two-sample t-test analyses 284 
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were used to identify significant (p < 0.05) differences between the multiple logistic regression 285 

model parameters. Since the WWTP influent multiple logistic regression models did not yield 286 

statistically significant relationships; subsequent analyses were conducted only on the WWTP 287 

effluent models.   288 

For each indicators’ WWTP effluent multiple logistic regression model, the area under 289 

ROC curves were estimated in order to measure the regression model’s ability to discriminate 290 

between effluent samples with and without the detection of any human enteric virus pathogens. 291 

The ROC curve is a plot of sensitivity (true-positive rate, y-axis) and specificity (false-positive 292 

rate, x-axis) of the logistic regression model and it was used predict human enteric virus 293 

detection  (any of the five human enteric viruses) in effluent samples. The area under the ROC 294 

curve, also known as ROC/AUC value, is a precision estimate expressed as a continuous value 295 

within a 0 to 1 range. The higher the ROC/AUC value, the more precise the logistic prediction 296 

model.  The ROC/AUC value and the area under the ROC curve are among the most objective 297 

methods for the evaluation of binary classifiers (27, 31) and have previously been used to 298 

predict enterovirus presence based upon somatic coliphage concentrations in recreational 299 

waters (47). Multiple logistic regression and ROC curve analyses (27, 47) were executed using 300 

STATA software version 13 (48). 301 

The recommended cut-off points for ROC/AUC were used in this study to determine 302 

the logistic regression model’s discrimination ability: 0 to 0.5, null discrimination; 0.7 to 0.8, 303 

acceptable discrimination; 0.8 to 0.9, excellent discrimination; and 0.9 - 1.0, exceptional 304 

discrimination (31, 49). The multiple logistic regression model’s discrimination ability must be  305 

at least acceptable (ROC/AUC ≥ 0.7) in order to identify a statistically-sound WWTP effluent 306 

indicator threshold concentration associated with an increased probability of human enteric 307 
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virus detection. Additionally, the indicator concentration parameter in the multiple logistic 308 

regression model must have a significant association (p-value <0.05) with the detection of any 309 

human enteric virus. The WWTP effluent somatic coliphage multiple regression model was 310 

the only model to comply with the aforementioned criteria. The somatic coliphage threshold 311 

concentration was identified at the concentration associated with the greatest sensitivity and 312 

specificity in the ROC analysis. 313 

The calculated somatic coliphage threshold concentration was evaluated for its ability 314 

to identify human enteric virus PCR-positive WWTP effluent samples (27, 31).  True-positive 315 

(i.e., PCR-positive for any of the human enteric viruses analyzed and somatic coliphage 316 

concentration equal to or above the threshold), true-negative (i.e., PCR-negative for any of the 317 

human enteric viruses analyzed and somatic coliphage concentration below the threshold), 318 

false-positive (i.e., PCR-negative for any of the human enteric viruses analyzed and somatic 319 

coliphage concentration equal to or above the threshold), and false-negative (i.e., PCR-positive 320 

for any of the human enteric viruses analyzed and somatic coliphage concentration below the 321 

threshold) samples were calculated. Finally, the positive predictive value (i.e., probability of 322 

being PCR-positive for any of the human enteric viruses analyzed and the sample exceeded the 323 

indicator threshold) and the negative predictive value (i.e., probability of being PCR-negative 324 

for any of the human enteric viruses analyzed and the sample was below the indicator 325 

threshold) were calculated. 326 

2.7 Quantitative microbial risk assessment for indirect reuse of wastewater treatment plant 327 

effluent meeting the somatic coliphage threshold 328 

In order to understand the health risks associated with the proposed somatic coliphage 329 

threshold, quantitative microbial risk assessment was executed for a hypothetical wastewater 330 
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reuse scenario using EV, HAV, and NoVGI as reference pathogens. RV was not included in 331 

this analysis because adults are not susceptible to RV (50). NoVGII was not included because 332 

no dose-response curve currently exists (62). The annual disease burden for an adult farmer 333 

indirectly irrigating with WWTP effluent meeting the somatic coliphage threshold was 334 

estimated in ‘R’ Version 3.5.3 (www.rproject.org). For each model parameter defined as a 335 

distribution, a set of 10,000 random values was used to calculate the annual disease burdens in 336 

order to account for the uncertainty and variability associated with the model parameters.  337 

First, daily exposure was defined for an adult farmer indirectly using the WWTP effluents 338 

from this study to irrigate crops, using the following equation (Eq. 3) for each enteric virus and 339 

parameter values/distributions (Table 2): 340 

𝑑𝑜𝑠𝑒 = 𝑣 × (
𝑐 ×  𝑒−𝑘𝑑𝑡

(1 + 𝑑)
)   

where c is the WWTP effluent virus concentration when somatic coliphage concentrations are 341 

below the threshold, v is the volume of water accidentally ingested by the adult farmer 342 

irrigating on one day, d is the dilution factor from the WWTP effluent mixing in the river, kd is 343 

the mean virus decay rate constant, and t is decay time (i.e., the time the virus was in the river 344 

prior to irrigation). Similar to other studies, it was assumed that 1 mL of water was 345 

accidentally ingested per day of exposure (51, 52). The infectious enteric virus concentration 346 

in the WWTP effluent was defined as a uniform distribution between 0 and the maximum 347 

theoretical process limit of detection. Virus decay followed a first-order decay equation (53), 348 

using mean decay rates determined from experiments with similar conditions to those in the 349 

Virilla River (54–56). The WWTP effluent in this study is indirectly reused at distances 350 

ranging from 1 m to 3 km from WWTP discharge; thus, decay time was defined as a uniform 351 

distribution between 0 and 1 days (57). Since the dilution factor can vary greatly over time and 352 
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by season, the dilution factor was defined as a uniform distribution between a conservative 353 

dilution factor (99:1) and a maximum dilution factor (50,000:1) (53).   354 

 The daily probability of infection (Pinf) for each virus was then calculated using the 355 

dose previously calculated (Eq. 3) and the previously published dose-response curves and 356 

parameters distributions (Table 2). Briefly, the exponential dose-response curve was used for 357 

EV, which was derived from a study with pigs and porcine enterovirus type 7 (58). The 358 

exponential dose-response curve was also used for HAV, derived from a HAV human 359 

challenge study (59). For NoVGI, the fractional Poisson dose-response curve, derived from 360 

NoVGI human challenge studies, was used (60). Since there is no agreement among the 361 

scientific community with respect to NoV dose response parameters, they were described as 362 

recommended (62). The NoVGI aggregation factor (µ) was described as distribution ranging 363 

from minimum to maximum aggregation. The NoVGI genetically susceptible fraction of the 364 

population (p) was adjusted to represent Costa Rica’s demographics (61, 62).  365 

Subsequently, the daily probability of illness (Pill) for each virus was calculated with 366 

the following equation (Eq. 4):  367 

𝑃𝑖𝑙𝑙 =  𝑃𝑖𝑛𝑓 × 𝑀 

where Pinf is the probability of infection previously calculated and M is the morbidity ratio 368 

(Table 2 (50, 51, 59, 63–66)). The annual risk of illness (Pa) for each virus was then calculated 369 

as follows (Eq. 5):  370 

𝑃𝑎 = 1 − (1 −  𝑃𝑖𝑙𝑙)𝑛 

where Pill is the daily risk of illness (Eq. 4) and n is the number of days adult farmers are 371 

exposed each year. Similar to other wastewater reuse irrigation studies, it was assumed that 372 

farmers irrigated 75 days per year (51, 65, 66). Finally, the annual disease burden (DB; daily 373 
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life adjusted years (DALYS)/person) for each virus was estimated as follows (Eq. 6): 374 

𝐷𝐵 =  𝑃𝑎  × 𝐵 × 𝑆𝑓 

where Pa is the annual risk of illness (Eq. 5), B is the disease burden per case of illness, and Sf 375 

is the susceptible fraction of the population (Table 2). The disease burden per case of illness 376 

(B) was not available for Costa Rica (middle-income country); thus, it was defined as a 377 

uniform distribution with minimum and maximum values identified for developing and 378 

developed countries (50, 67–69). The NoV susceptible fraction of the population (Sf) was 379 

defined as a uniform distribution for the Costa Rican demographic (61, 62). The EV 380 

susceptible fraction of the population (Sf) was assumed to be 1 given high EV diversity (51). 381 

The HAV susceptible fraction of the population was 0.717, as defined by seroprevalence in 382 

adult Costa Rican population (28). Finally, the cumulative annual disease burden per person 383 

from the three reference viruses was calculated by adding together the annual disease burden 384 

(DB) for each virus. Since the dose calculation usually has the most significant influence on 385 

model outputs (70) this quantitative microbial risk assessment’s sensitivity to the exposure 386 

assessment (Eq. 3) input parameters was tested by calculating the Spearman rank order 387 

coefficients between the simulated input parameters and the estimated cumulative annual 388 

disease burden (α = 0.05).   389 

 390 

3. Results and Discussion 391 

 392 

3.1 Fecal coliforms and somatic coliphage in untreated wastewater 393 

For the five WWTPs investigated during this study, the mean (+/- standard deviation) 394 

fecal coliform influent concentration was estimated as 6.8- ± 6.8-log10 MPN/ 100 mL, similar to 395 
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those summarized in the literature (71). The mean (+/- standard deviation)  somatic coliphage 396 

influent concentration was 8.7- ± 9.0-log10 PFU/ 100 mL, which is 3-log10 PFU/ 100 mL greater 397 

than the mean concentration calculated in a recent global meta-analysis (Figure 2) (11). It is 398 

important to note that this recent meta-analysis did not include any Latin American countries and 399 

identified statistically significant differences between the geographical locations studied (11). 400 

The mean somatic coliphage influent concentrations reported in this study are more comparable 401 

to those in Argentina and Colombia, which are likely more similar to those in Costa Rica due to 402 

geographic location and water usage (72). 403 

 404 

3.2 Fecal coliforms and somatic coliphage highly variable in treated wastewater 405 

Both fecal coliforms and somatic coliphage concentrations were highly variable in the 406 

WWTP effluent studied, with mean and standard deviations estimated as 6.1- ± 6.6-log10 MPN/ 407 

100 mL and 3.2- ± 3.1-log10 PFU/ 100 mL, respectively (Figure 2). The effluent fecal coliforms 408 

and somatic coliphage concentrations were similar to other WWTP studies (3, 20, 73, 74). 409 

Variability in the WWTP operational conditions (e.g., concentration of mixed liquor suspended 410 

solids, temperature, and biochemical oxygen demand (BOD)) are likely responsible for the 411 

indicator variability observed in this study (10, 72, 75, 76). Globally, fecal coliforms and somatic 412 

coliphage mean concentrations were significantly lower in the effluent in comparison to the 413 

influent (p<0.0001). However, with respect to WWTPs individually, mean fecal coliforms and 414 

somatic coliphage concentrations were lower in effluents than in influents at three of the five 415 

WWTPs (p = 6.0×10
-6 

to 0.02) and all five of the WWTPs (p = 6.0×10
-7 

to 0.04), respectively. 416 

Globally, the fecal coliforms and somatic coliphage mean (+/- standard deviation) log reduction 417 
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values were 0.99- ± 1.33-log10 and 2.70- 2.60-log10, respectively, and coincided with ranges 418 

previously reported  (1).  419 

 420 

3.3 Human enteric viruses frequently detected in (un)treated wastewater 421 

 Human enteric viruses (EV, HAV, NoVGI, NoVGII, or RV) were detected in WWTP 422 

influent and effluent at variable frequencies (Table 3). No statistical difference with respect to 423 

the frequency of human enteric virus detection was found between the WWTP influent and 424 

effluent (p > 0.45). RV was the most frequently detected in both influent and effluent samples 425 

(47% and 39%, respectively; Table 3), followed by NoV (GI and GII; 39% and 36%, 426 

respectively). Globally, NoVGI was detected two times more frequently than NoVGII. Less than 427 

25% of the samples were positive for EV and less than 10% of the samples for HAV. It is 428 

important to mention that EV and HAV were analyzed in 117 out of 119 water samples; 429 

meanwhile, RV and NoV were analyzed in two-thirds of the samples (n = 79 and 80, 430 

respectively). Similar to all PCR-based analyses, it is possible that samples with undetected 431 

viruses had virus concentrations below the method detection limits or that inhibitors decreased 432 

RT-PCR efficiency (24). Additionally, a mixture of end-point and qPCR assays were effectively 433 

used in this study because improved resources were not logistically available. The lack of 434 

available resources is common in middle- and low-income countries because funds are limited, 435 

and supplies are often more expensive as well as difficult to import. When possible, future 436 

studies should use just one type of PCR-based analysis.   437 

 The RV and NoV data presented in this study corroborate with RV and NoV 438 

epidemiologies in Central and South American countries, in which they are present throughout 439 

the year and peak during the dry season (December – May) (77–79). Similar to our study, 440 
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NoVGI has been previously quantified in Costa Rican wastewater year-round, with peaks in the 441 

dry season, at a WWTP in the Province of Puntarenas; in contrast, RV was the most frequently 442 

detected virus in our study and the lowest quantified in Symonds et al. (80). The difference in 443 

RV prevalence between the two studies is likely due to RV epidemiology in Costa Rica, where 444 

RV infection is more frequent in the Greater Metropolitan Area compared to coastal regions 445 

(such as the WWTP in Puntarenas) (81). With respect to EV, detection was very low (22%) in 446 

influent and effluent in comparison to the USA (e.g., > 92% (25)). This difference may be due to 447 

differences in epidemiology and/or methods between the two studies; however, it is difficult to 448 

ascertain the origin of these differences because Central American EV epidemiology data is 449 

limited. 450 

 451 

3.3 Fecal coliforms do not correlate with human enteric virus detection and no threshold 452 

identified 453 

Multiple logistic regression models were used to analyze the statistical relationship 454 

between fecal coliform concentrations and the detection of human enteric viruses at influent 455 

and effluent wastewater samples. The estimated parameters from this logistic regression model 456 

were -3.47×10
-07

 (p = 0.258) for fecal coliforms concentrations and 0.8881 (p = 0.297) for 457 

dry/rainy season. According to the model, fecal coliforms do not correlate with human enteric 458 

virus detection in WWTP influent or effluent (OR = 0.99, p = 0.26). Despite the lack of 459 

relationship between fecal coliforms and human enteric viruses detection, ROC analysis was 460 

used to estimate a possible fecal coliform concentration associated with the detection of any of 461 

the five human enteric viruses analyzed (i.e., to identify an appropriate maximum fecal 462 

coliform concentration associated with increased human enteric virus detection). The ROC 463 
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analysis for fecal coliforms and human enteric virus detection did not have acceptable 464 

precision (ROC/AUC= 0.64). These findings corroborate with previous studies that did not 465 

identify correlations between fecal coliform concentrations and human enteric virus detection 466 

(10, 20, 41, 82). 467 

 468 

3.4 Somatic coliphage correlate with human enteric virus detection and a threshold was 469 

identified 470 

Multiple logistic regression models were also used to analyze the statistical relationship 471 

between somatic coliphage concentrations (PFU/ 100 mL) and human enteric virus detection 472 

in WWTP influent and effluents. For the WWTP influent, the estimated multiple logistic 473 

regression model parameters were 3.98×10
-10

 (p = 0.074) for somatic coliphage concentration 474 

and 0.5606 (p = 0.035) for dry/rainy season. WWTP influent had a 75% probability of being 475 

positive for at least one of the human enteric viruses studied during the dry season in 476 

comparison to the rainy season (OR = 1.75, p = 0.035). Additionally, a significant correlation 477 

between somatic coliphage concentrations and human enteric virus detection was identified in 478 

WWTP effluent (OR = 1.00, p = 0.01), which was similar to those previously described by (3, 479 

10, 83). For the WWTP effluent, the estimated multiple logistic regression model parameters 480 

were -0.0004 (p = 0.006) for somatic coliphage concentration and 0.8881 (p = 0.297) for 481 

dry/rainy season. It is important to note that season was not a significant predictor of human 482 

enteric virus detection in WWTP effluent (OR = 2.43, p = 0.297). 483 

In order to determine an appropriate somatic coliphage concentration associated with 484 

an increased probability of human enteric virus detection, ROC analysis was used to estimate 485 

the somatic coliphage concentration associated with human enteric virus detection (i.e., any of 486 
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the five viruses) in WWTP effluent. The area under the ROC curve (AUC) was 0.7 (Figure 3); 487 

thus, it had an acceptable discrimination ability. The sensitivity and specificity curves intersect 488 

near the 0.526 probability cutoff, where the highest specificity (75%) and sensibility (54%) 489 

were found when the somatic coliphage concentration was 3.5-log10 PFU/ 100 mL (p = 0.526). 490 

Thus, this somatic coliphage threshold (3.5-log10 PFU/100 mL) was the concentration most 491 

likely associated with a lack of human enteric virus detection. 492 

This somatic coliphage threshold was evaluated for its ability to identify human enteric 493 

virus PCR-positive WWTP effluent samples by calculating the Positive and Negative Predictive 494 

Values (31).  The frequencies of true-/false-positives and true-/false-negatives were calculated 495 

for each enteric virus type (Table 4), which were used to calculate the Positive and Negative 496 

Predictive values. Positive Predictive Value was 46%; therefore, 46% of samples had somatic 497 

coliphage concentrations above the threshold and human enteric viruses were detected. The 498 

Negative Predictive Value was 33%; thus, 33% of samples had somatic coliphage concentrations 499 

less than the threshold and no human enteric viruses were detected. Using this threshold, only a 500 

34.5% of the samples were classified as false-negative and would represent a possible human 501 

health risk (Table 4). Overall, 65.6% of WWTP effluent samples were safely classified using the 502 

proposed somatic coliphage threshold.  503 

Similar to this study, low or undetectable human enteric virus concentrations were 504 

measured in WWTP effluent when somatic coliphage concentrations were below 3.5-log10 PFU/ 505 

100 mL (3, 20, 73, 74, 83, 84). Nevertheless, it is important to note that the results of this study 506 

are directly dependent on the efficiencies and detection limits of the methods used. It is possible 507 

that the somatic coliphage threshold would be different if different methods (e.g., virus 508 

concentration, RNA extraction) were used or if additional/fewer human enteric viruses had been 509 
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analyzed. Furthermore, this study does not take into consideration the detection of infectious 510 

human enteric viruses. Future studies are needed to explore and confirm the somatic coliphage 511 

threshold identified in this study. Specifically, studies are needed that take into consideration 512 

human enteric virus infectivity. It is also important to analyze how the use of different methods 513 

may or may not influence the somatic coliphage threshold identified. Interestingly, the somatic 514 

coliphage threshold identified in this study is similar to the threshold previously proposed two 515 

decades ago (3-log10 PFU/ 100 mL), even though this study were executed using different 516 

statistical and virus methods, only analyzed human EV, and used cell-culture methods (20). 517 

 518 

3.5 Annual disease burden for indirectly reusing wastewater effluent below the proposed 519 

threshold 520 

Quantitative microbial risk assessment was used to estimate the EV, HAV, NoVGI, as 521 

well as cumulative (all three viruses) annual disease burden for an adult farmer irrigating 522 

indirectly (75 days per year) with WWTP effluent below the proposed somatic coliphage 523 

threshold. The median cumulative annual disease burden per adult farmer was 2.52 × 10
-5

 524 

DALYs (Figure 4), which is less than the recommendation of 10
-4 

(11, 85). EV contributed the 525 

most to the cumulative annual disease burden, followed by HAV and NoVGI. The exposure 526 

assessment parameter sensitivity analysis indicated that the daily volume ingested (ρ = 0.479, p = 527 

2.2 × 10
-16

), WWTP effluent infectious enteric virus concentrations (ρ = 0.471, p = 2.2 × 10
-16

), 528 

and the dilution factor (ρ = -0.466, p = 2.2 × 10
-16

) were most influential on the cumulative 529 

annual disease burden estimates in comparison to the decay-related variables (0.102 ≤ | ρ | ≤ 530 

0.231; p < 2.2 × 10
-16

). Furthermore, the NoVGI decay rate did not significantly correlate with 531 

the cumulative annual disease burden (ρ = -0.017, p = 0.087).  532 
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Based upon the sensitivity analysis results, it is likely that the cumulative annual disease 533 

burdens may increase or decrease markedly if the estimated daily volume ingested and/or 534 

WWTP effluent infectious enteric virus concentrations were higher or lower, respectively. In 535 

order to incorporate uncertainty and variability in this study, WWTP effluent infectious enteric 536 

virus concentrations were defined as a uniform distribution between 0 and the maximum 537 

theoretical process limit of detection. It was assumed that all viruses were infectious; thus, it is 538 

possible that the cumulative disease burden calculated overestimated risk. Additionally, the 539 

cumulative disease burden calculated could underestimate the actual risk if the theoretical 540 

process limit of detection was greater than the maximum value estimated. Nevertheless, the 541 

theoretical process limit of detection took into account losses associated with virus concentration 542 

and detection. 543 

Since Costa Rican culture lacks habits associated with additional hand-mouth contact 544 

(e.g., Bolivia, chewing coca leaves), a point value traditionally used in quantitative microbial risk 545 

assessment was used even though it can impact model output (51). Similarly, it was difficult to 546 

identify the dilution factor of the WWTP effluent entering the river due to constant fluctuations 547 

in river flow rates and volume. Consequently, this parameter was defined as a distribution 548 

between a conservative (99:1) and maximum (50,000:1) assumption (53). If the dilution factor 549 

was greater, then the cumulative annual disease burden estimates would be much lower. Finally, 550 

cumulative annual disease burden would be greatly affected if the number of days farmers 551 

irrigated indirectly with WWTP effluent were greater or less than the assumed 75 days. 552 

While quantitative microbial risk assessment is a useful tool, it is based upon assumptions 553 

that may or may not reflect reality. Consequently, this quantitative microbial risk assessment 554 

incorporated the use of parameter distributions to account for this uncertainty and variability. 555 
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Nevertheless, it is important to recognize that the dose-response curves and parameter 556 

distributions may not reflect realistic human populations, which can highly influence model 557 

outputs (53, 70). This is particularly true for EV, which is based upon a non-human model (51, 558 

58), and NoVGI because there is no agreement on which parameters are most appropriate (62). 559 

Point values were also used for certain parameters when preferred values were previously 560 

identified in other studies. Additionally, data from other contexts were used when contextualized 561 

data were lacking. Similar to other studies, it is likely that these assumptions influenced the 562 

model output (51,53, 70). Although wastewater contains a wide-variety of disease-causing 563 

viruses, it is not possible to estimate the disease burden of all pathogens given the lack of 564 

disease-related and dose-response data. Consequently, this study incorporated three reference 565 

pathogens to calculate the cumulative annual disease burden associated with indirect wastewater 566 

reuse with WWTP effluent meeting the somatic coliphage threshold. 567 

 568 

3.6 Implications for activated sludge WWTP effluent management 569 

 As far as we know, this is the first report of a statistically sound somatic coliphage 570 

threshold estimation for WWTP effluent management. The use of a somatic coliphage threshold 571 

of 3.5-log10 PFU/ 100 mL is an affordable alternative and/or complement to the  virus log 572 

reduction value multiple barrier system approach, and if implemented, could improve WWTP 573 

effluent management in resource-limited regions that have been resistant to the aforementioned 574 

approach. Thus, compliance with this threshold would assure lower enteric virus concentrations 575 

discharged into nearby rivers with downstream uses in agriculture.  576 

Additionally, the indirect reuse of WWTP effluent meeting the proposed somatic 577 

coliphage threshold was associated with a median cumulative annual disease burden that 578 
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complies with the WHO recommendation (13, 85). Given the potential of the proposed somatic 579 

coliphage to improve activated sludge WWTP effluent management, further research is 580 

warranted to validate, improve, and optimize this threshold for use in Costa Rica. Future 581 

investigations should include improved disease burden estimates that contain the most context-582 

appropriate data possible, especially with respect to the exposure assessment parameters. 583 

Additional research is also needed to validate the way in which such a threshold should be 584 

implemented (e.g., geometric mean, single measurement, 95% percentile) to ensure improved 585 

wastewater effluent management, and ultimately better protect public health. Finally, the 586 

statistical approach presented here can be implemented in other regions to determine a logical 587 

and feasible metric to improve upon existing WWTP discharge legislation.  588 
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Table 1. RT-PCR and RT-qPCR assays used to detect enterovirus, hepatitis A, rotavirus group A, and norovirus genotypes I and II. 

 

Virus Gene Primer Sequence PCR conditions 

Primer Final 

concentration 

Reference 

EV 5’ Non 

coding 

region 

EV1: 5’ ATTGTCACCATAAGCAGCCA 3’ 

EV2: 5’ TCCGGCCCCTGAATGCGGCTAATCC 3’ 

EV3: 5’ 

ACACGGACACCCAAAGTAGTCGGTTCC 3’ 

EV4: 5’ TCCGGCCCCTGAATGCGGCTAATCC3’ 

PCRI: EV1/EV2 

Activation cycle (95 ºC 5 min) 

30 cycles: 95 ºC 45s, 55 ºC 45 s, 

and 70 ºC 45s 

PCRII: EV3/EV4 

Activation cycle (95 ºC 5 min) 

30 cycles: 95 ºC 45s, 55 ºC 45 s, 

and 70 ºC 45s 

EV1: 6.1 mM 

EV2: 7.6 mM 

EV3: 8.2 mM 

EV3: 7.6 mM 

(37) 

HAV VP1 

region 

HA1: 5’ TTGCTCCTCTTTATCATGCTATG 3’ 

HA3: 5’ TGGTTAAATCTAATGGTCCTCTATA 3’ 

Activation cycle (95 ºC 5 min) 

40 cycles: 95 ºC 30s, 46 ºC 30 s, 

and 70 ºC 30s 

HA1: 8.7 mM 

HA3: 9.6 mM 

(38) 
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RV NSP-3 ROTAS1: 5’ ACCATCTTCACgTAACCCTC 3’ 

ROTAS2: 5’ ACCATCTACACATGACCCTC 3’ 

ROTAA: 5’ CACATAACGCCCCTATAGCC 3’ 

ROTAP: [6FAM]-

GGGGATGAGCACAATAGTTAAAAGCTAACA

CTGTCAA -[BBQ] 

Activation cycle (95 ºC 5 min) 

40 cycles: 95 º 20 s, 60 ºC 40 s 

ROTAS1: 0.2 

pM 

ROTAS2: 0.2 

pM 

ROTAA: 0.2 

pM 

ROTAAP: 0.2 

pM 

(39) 

NoV

GI 

ORF1 NVG1F: 5’CGYTGGATGCGNTTCCATGA 3’ 

NVG1R: 5’ GTCCTTAGACGCCATCATC 3’ 

G1-prob: [6FAM]-AGATYGCGRTCYCCTGTCCA-

[BHQ1] 

Activation cycle (95 ºC 5 min) 

40 cycles: 95 º 15 s, 56 ºC 60 s 

NVG1F: 0.2 pM 

NVG1R: 0.2 pM 

G1-prob: 0.2 

pM 

(40) 

NoV

GII 

ORF1 NVG2F: 5’ATGTTYAGRTGGATGAGRTTYTC 3’ 

COG2R: 5’ TCgACgCCATCTTCATTCACA 3’ 

G2-prob: 

Activation cycle (95 ºC 5 min) 

40 cycles: 95 º 15 s, 56 ºC 60 s 

NVG2F: 0.2 pM 

COG2R: 0.2 pM 

G2-prob: 0.2 

(21) 
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[JOE]TGGGAGGGCGATCGCAATCT[BHQ1] pM 
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Table 2. Quantitative microbial risk model parameter values/distributions, and dose-

response equations. 

 

Parameter Units Value or distribution Reference 

Virus concentration in WWTP 

effluent (c) 

Virus/1 mL uniform(0, 182) This study. 

Volume of water ingested (v) mL 1 (51, 52) 

Dilution factor (d) proportion uniform(99,50000) (53) 

Time in river (t) day uniform(0,1) (53, 57) 

Mean decay rate (kd) day-1   

enterovirus  0.028 (55) 

hepatitis A  0.22 (54) 

norovirus genotype I  0.08 (56) 

Dose-response    

enterovirus Exponential 𝑃𝑖𝑛𝑓 = 1 − 𝑒−𝑑 ×𝑘 

k = uniform(0.00291, 0.00562) 

(58) 

hepatitis A Exponential 𝑃𝑖𝑛𝑓 = 1 − 𝑒−𝑑 ×𝑘 

k = uniform(0.00005871, 0.001191) 

(59) 

norovirus genotype I Fractional 

Poisson 

𝑃𝑖𝑛𝑓 = 𝑃 × [1 − 𝑒−𝑑𝜇  ] 
P = uniform(0.87, 1) 

µ =  uniform(1, 1106) 

(60 - 62) 

Morbidity Ratio (M)  
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Menterovirus median 0.9 (50) 

Mhepatitis A  uniform(0.25, 0.92) (59, 63) 

Mnorovirus  uniform(0.3, 1) (64) 

Total annual days of irrigation  days/farmer 75 (51, 65-66) 

Disease burden per illness (B) DALYS/case 

of illness 

  

Benterovirus  uniform(0.0024,0.0150) (68, 69) 

Bhepatitis A  uniform(0.0761, 0.191) (50) 

Bnorovirus  uniform(0.000371, 0.00623) (67) 

Susceptible fraction of population 

(S) 

proportion   

Senterovirus  1 (51) 

Shepatitis A  0.717 (28) 

Snorovirus  uniform(0.87,1.00) (61, 62) 
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Table 3. Positive samples (%) for human enteric viruses in wastewater influent and effluent 

from five activated sludge wastewater treatment plants in Costa Rica, 2013. 

 

Variable 

Influent Effluent Total 

p* (No. positives / 

No. samples) (%) 

(No. positives / 

No. samples) (%) 

(No. positives 

/ No. samples) 

(%) 

Any viral pathogen** 32/60 (53%) 31/59 (53%) 63/119 (53%) 0.93 

Enterovirus 13/59 (22%) 13/58 (22%) 26/117 (22%) 0.96 

Hepatitis A 5/59 (8%) 3/58 (5%) 8/117 (7%) 0.48 

Rotavirus 18/38 (47%) 16/41 (39%) 34/79 (43%) 0.45 

Norovirus GI  16/38 (39%) 13/34 (36%) 29/72 (37%) 0.74 

Norovirus GII 9/38 (24%) 4/34 (12%) 13/72 (18%) 0.19 

All Norovirus 16/41 (39%) 14/39 (36%) 30/80 (37%) 0.77 

 

* Person Chi-square results for differences in detection of pathogens. 

** Total number of water samples positive for any pathogenic virus. 
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Table 4. Relationship between human enteric virus detection and somatic coliphage 

concentrations above calculated threshold in wastewater treatment plant (WWTP) 

effluent. 

Human Enteric Virus* 

WWTP effluent samples with somatic coliphage detection 

above threshold 

True 

Positive (%) 

False 

Positive (%) 

False 

Negative (%) 

True 

Negative (%) 

Enterovirus (n=58) 6 (10.3) 22 (37.9) 7 (12.1) 23 (39.7) 

Hepatitis A Virus (n=58) 0 (0) 28 (48.3) 3 (5.2) 27 (46.6) 

Rotavirus (n=41) 6 (14.6) 23 (56) 10 (24.4) 12 (29.3) 

Norovirus (n=40) 6 (15.8) 13 (31.7)  7 (18.4) 14 (36.8) 

Any virus (n=58) 13 (22.4) 15 (25.9) 20 (34.5) 10 (17.2) 

* Some samples were positive for more than one human enteric virus 
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Figure Legends 1 

 2 

Figure 1. San José Province depicting the location of the five wastewater treatment plants 3 

included in the study. The San José Province is located at an altitude of 760 – 1,230 m 4 

above sea level and has an average temperature of 22°C year-round. Annual average 5 

precipitation ranges from 2,000–3,000 mm.  6 

 7 

Figure 2. Global somatic coliphage and fecal coliform concentrations at influent and 8 

effluent of WWTP by sampling period. 9 

 10 

Figure 3. Area under Receiver Operating Characteristic (ROC) curve for the multiple 11 

logistic regression model of somatic coliphage concentrations as a function of human 12 

enteric virus detection in conventional activated sludge WWTP effluent. 13 

 14 

Figure 4. The estimated annual disease burden for an adult farmer indirectly irrigating with 15 

wastewater treatment plant effluent below the somatic coliphage threshold, which was 16 

estimated for norovirus genotype I (NoV), enterovirus (EV), hepatitis A (HAV, as well as 17 

cumulatively considering the three aforementioned viruses. The dashed red line identifies 18 

the World Health Organization’s annual recommended limit for the additional disease 19 

burden caused by wastewater reuse (10
-4

 DALYS per person).  20 

 21 

 22 

 23 
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