92 research outputs found

    On The Frontlines of Richer Metadata: Technical Services and TEI

    Get PDF
    With shrinking print collections and the increase in automation, technical services departments are looking for new ways to utilize their skills. Digital humanities projects offer the opportunity for technical services departments to expand their workflows while using skills they already possess. This article details Bowling Green State University’s technical services department’s project to use the digital humanities to make World War I soldiers’ letters available online using the metadata schema, Text Encoding Initiative (TEI). By partnering with special collections and increasing staff focus on metadata, the department has created a new path forward that can be replicated at other institutions

    Impulsivity and Inhibitory Control Deficits Are Associated With Unhealthy Eating in Young Adults

    Get PDF
    Heightened impulsivity and inefficient inhibitory control are increasingly recognized as risk factors for unhealthy eating and obesity but the underlying processes are not fully understood. We used structural equation modeling to investigate the relationships between impulsivity, inhibitory control, eating behavior, and body mass index (BMI) in 210 undergraduates who ranged from underweight to obese. We demonstrate that impulsivity and inhibitory control deficits are positively associated with several facets of unhealthy eating, including overeating in response to external food cues and in response to negative emotional states, and making food choices based on taste preferences without consideration of health value. We further show that such unhealthy eating is, for the most part, associated with increased BMI, with the exception of Restraint Eating, which is negatively associated with BMI. These results add to our understanding of the impact of individual differences in impulsivity and inhibitory control on key aspects of unhealthy eating and may have implications for the treatment and prevention of obesity

    Care homes in the community: Evaluation report of a Bristol Ageing Better project led by Alive

    Get PDF
    This report presents an evaluation of the Alive project ‘Communities of Interest’ funded by Bristol Ageing Better. It is a collaborative piece of work, written by Alive staff Sara Turrill (Project Manager, Alive), Harriet Blackmore (Project Assistant, Alive), Abi Sweet (Community Projects Officer, Alive), Jennie Reed (Marketing Manager, Alive), Simon Bernstein (Former CEO, Alive), Amy Beardmore (Research Associate, UWE), Mat Jones (Associate Professor, UWE

    The SAMI Galaxy Survey: a statistical approach to an optimal classification of stellar kinematics in galaxy surveys

    Full text link
    Large galaxy samples from multi-object IFS surveys now allow for a statistical analysis of the z~0 galaxy population using resolved kinematics. However, the improvement in number statistics comes at a cost, with multi-object IFS survey more severely impacted by the effect of seeing and lower S/N. We present an analysis of ~1800 galaxies from the SAMI Galaxy Survey and investigate the spread and overlap in the kinematic distributions of the spin parameter proxy λRe\lambda_{Re} as a function of stellar mass and ellipticity. For SAMI data, the distributions of galaxies identified as regular and non-regular rotators with \textsc{kinemetry} show considerable overlap in the λRe\lambda_{Re}-εe\varepsilon_e diagram. In contrast, visually classified galaxies (obvious and non-obvious rotators) are better separated in λRe\lambda_{Re} space, with less overlap of both distributions. Then, we use a Bayesian mixture model to analyse the observed λRe\lambda_{Re}-log(M/M)\log(M_*/M_{\odot}) distribution. Below log(M/M)10.5\log(M_{\star}/M_{\odot})\sim10.5, a single beta distribution is sufficient to fit the complete λRe\lambda_{Re} distribution, whereas a second beta distribution is required above log(M/M)10.5\log(M_{\star}/M_{\odot})\sim10.5 to account for a population of low-λRe\lambda_{Re} galaxies. While the Bayesian mixture model presents the cleanest separation of the two kinematic populations, we find the unique information provided by visual classification of kinematic maps should not be disregarded in future studies. Applied to mock-observations from different cosmological simulations, the mixture model also predicts bimodal λRe\lambda_{Re} distributions, albeit with different positions of the λRe\lambda_{Re} peaks. Our analysis validates the conclusions from previous smaller IFS surveys, but also demonstrates the importance of using kinematic selection criteria that are dictated by the quality of the observed or simulated data.Comment: 30 pages and 17 figures, accepted for publication in MNRAS. Abstract abridged for Arxiv. The key figures of the paper are: 3, 7, 8, and 1

    The SAMI Galaxy Survey: Bayesian Inference for Gas Disk Kinematics using a Hierarchical Gaussian Mixture Model

    Full text link
    We present a novel Bayesian method, referred to as Blobby3D, to infer gas kinematics that mitigates the effects of beam smearing for observations using Integral Field Spectroscopy (IFS). The method is robust for regularly rotating galaxies despite substructure in the gas distribution. Modelling the gas substructure within the disk is achieved by using a hierarchical Gaussian mixture model. To account for beam smearing effects, we construct a modelled cube that is then convolved per wavelength slice by the seeing, before calculating the likelihood function. We show that our method can model complex gas substructure including clumps and spiral arms. We also show that kinematic asymmetries can be observed after beam smearing for regularly rotating galaxies with asymmetries only introduced in the spatial distribution of the gas. We present findings for our method applied to a sample of 20 star-forming galaxies from the SAMI Galaxy Survey. We estimate the global Hα\alpha gas velocity dispersion for our sample to be in the range σˉv\bar{\sigma}_v \sim [7, 30] km s1^{-1}. The relative difference between our approach and estimates using the single Gaussian component fits per spaxel is Δσˉv/σˉv=0.29±0.18\Delta \bar{\sigma}_v / \bar{\sigma}_v = - 0.29 \pm 0.18 for the Hα\alpha flux-weighted mean velocity dispersion.Comment: 23 pages, 12 figures, accepted for MNRA

    Scale-dependent perspectives on the geomorphology and evolution of beachdune systems

    Get PDF
    Despite widespread recognition that landforms are complex Earth systems with process-response linkages that span temporal scales from seconds to millennia and spatial scales from sand grains to landscapes, research that integrates knowledge across these scales is fairly uncommon. As a result, understanding of geomorphic systems is often scale-constrained due to a host of methodological, logistical, and theoretical factors that limit the scope of how Earth scientists study landforms and broader landscapes. This paper reviews recent advances in understanding of the geomorphology of beach-dune systems derived from over a decade of collaborative research from Prince Edward Island (PEI), Canada. A comprehensive summary of key findings is provided from short-term experiments embedded within a decade-long monitoring program and a multi-decadal reconstruction of coastal landscape change. Specific attention is paid to the challenges of scale integration and the contextual limitations research at specific spatial and/or temporal scales imposes. A conceptual framework is presented that integrates across key scales of investigation in geomorphology and is grounded in classic ideas in Earth surface sciences on the effectiveness of formative events at different scales. The paper uses this framework to organize the review of this body of research in a 'scale aware' way and, thereby, identifies many new advances in knowledge on the form and function of subaerial beach-dune systems. Finally, the paper offers a synopsis of how greater understanding of the complexities at different scales can be used to inform the development of predictive models, especially those at a temporal scale of decades to centuries, which are most relevant to coastal management issues. Models at this (landform) scale require an understanding of controls that exist at both ‘landscape’ and ‘plot’ scales. Landscape scale controls such as sea level change, regional climate, and the underlying geologic framework essentially provide bounding conditions for independent variables such as winds, waves, water levels, and littoral sediment supply. Similarly, an holistic understanding of the range of processes, feedbacks, and linkages at the finer plot scale is required to inform and verify the assumptions that underly the physical modelling of beach-dune interaction at the landform scale
    corecore