426 research outputs found

    Towards classification of head movements in audiovisual recordings of read news

    Get PDF
    In this paper we develop a system for detection of word-related head movements in audiovisu-al recordings of read news. Our materials consist of Swedish television news broadcasts and comprise audiovisual recordings of five news readers (two female, three male). The corpus was manually labelled for head movement, applying a simplistic annotation scheme consisting of a binary decision about absence/presence of a movement in relation to a word. We use OpenCV for frontal face detection and based on this we calculate velocity and acceleration features. Then we train a machine learning system to predict absence or presence of head movement and achieve an accuracy of 0.892, which is better than the baseline. The system may thus be helpful for head movement labelling

    Hierarchy Theory of Evolution and the Extended Evolutionary Synthesis: Some Epistemic Bridges, Some Conceptual Rifts

    Get PDF
    Contemporary evolutionary biology comprises a plural landscape of multiple co-existent conceptual frameworks and strenuous voices that disagree on the nature and scope of evolutionary theory. Since the mid-eighties, some of these conceptual frameworks have denounced the ontologies of the Modern Synthesis and of the updated Standard Theory of Evolution as unfinished or even flawed. In this paper, we analyze and compare two of those conceptual frameworks, namely Niles Eldredge’s Hierarchy Theory of Evolution (with its extended ontology of evolutionary entities) and the Extended Evolutionary Synthesis (with its proposal of an extended ontology of evolutionary processes), in an attempt to map some epistemic bridges (e.g. compatible views of causation; niche construction) and some conceptual rifts (e.g. extra-genetic inheritance; different perspectives on macroevolution; contrasting standpoints held in the “externalism–internalism” debate) that exist between them. This paper seeks to encourage theoretical, philosophical and historiographical discussions about pluralism or the possible unification of contemporary evolutionary biology

    The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?

    Get PDF
    The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework

    Genome-wide single-cell-level screen for protein abundance and localization changes in response to DNA damage in S. cerevisiae

    Get PDF
    An effective response to DNA damaging agents involves modulating numerous facets of cellular homeostasis in addition to DNA repair and cell-cycle checkpoint pathways. Fluorescence microscopy-based imaging offers the opportunity to simultaneously interrogate changes in both protein level and subcellular localization in response to DNA damaging agents at the single-cell level. We report here results from screening the yeast Green Fluorescent Protein (GFP)-fusion library to investigate global cellular protein reorganization on exposure to the alkylating agent methyl methanesulfonate (MMS). Broad groups of induced, repressed, nucleus- and cytoplasm-enriched proteins were identified. Gene Ontology and interactome analyses revealed the underlying cellular processes. Transcription factor (TF) analysis identified principal regulators of the response, and targets of all major stress-responsive TFs were enriched amongst the induced proteins. An unexpected partitioning of biological function according to the number of TFs targeting individual genes was revealed. Finally, differential modulation of ribosomal proteins depending on methyl methanesulfonate dose was shown to correlate with cell growth and with the translocation of the Sfp1 TF. We conclude that cellular responses can navigate different routes according to the extent of damage, relying on both expression and localization changes of specific proteins.National Cancer Institute (U.S.) (R01-CA055042 (now NIEHS R01-ES022872))Massachusetts Institute of Technology. Center for Environmental Health Sciences (Grant NIEHS P30-ES002109)National Cancer Institute (U.S.) (KI Center Grant U54-CA112967)National Cancer Institute (U.S.) (Cancer Center Support Grant P30-CA14051)National Institute of Environmental Health Sciences (R01-ES022872)MIT Faculty Start-up FundMassachusetts Institute of Technology. Computational and Systems Biology Initiative (Merck & Co. Postdoctoral Fellowship

    Disruptive viability selection on a black plumage trait associated with dominance.

    Get PDF
    Traits used in communication, such as colour signals, are expected to have positive consequences for reproductive success, but their associations with survival are little understood. Previous studies have mainly investigated linear relationships between signals and survival, but both hump-shaped and U-shaped relationships can also be predicted, depending on the main costs involved in trait expression. Furthermore, few studies have taken the plasticity of signals into account in viability selection analyses. The relationship between signal expression and survival is of particular interest in melanin-based traits, because their main costs are still debated. Here, we first determined the main factors explaining variability in a melanin-based trait linked to dominance: the bib size of a colonial bird, the sociable weaver Philetairus socius. We then used these analyses to obtain a measure representative of the individual mean expression of bib size. Finally, we used capture-recapture models to study how survival varied in relation to bib size. Variation in bib size was strongly affected by year and moderately affected by age, body condition and colony size. In addition, individuals bearing small and large bibs had higher survival than those with intermediate bibs, and this U-shaped relationship between survival and bib size appeared to be more pronounced in some years than others. These results constitute a rare example of disruptive viability selection, and point towards the potential importance of social costs incurred by the dominance signalling function of badges of status.Our research was funded by the DST-NRF Centre of Excellence at the Percy FitzPatrick Institute (University of Cape Town), the Portuguese Foundation for Science and Technology (FCT, PTDC/BIA-BEC/103818/2008) to RC, the region Languedoc Roussillon, the programme "Chercheur(se)s d’avenir" 2013 and ANR JC 09-JCJC-0050-01JCJC to CD, the Natural Environment Research Council (NERC, UK: NE/G018588/1 and NE/K015257/1) to BJH, and the University of Cape Town and St John’s College, Cambridge (UK) to CNS. This research was also supported by a Marie Curie-IRSES grant (FP7-PEOPLE-2012-IRSES; ‘Cooperation’ 318994) to all and was conducted within the CNRS-CIBIO International Associate Laboratory (LIA) ‘Biodiversity and Evolution’. RC was funded by a ‘Ciência 2008’ fellowship (FCT, Portugal) with further support from FEDER (Operational Programme for Competitiveness Factors – COMPETE, Project “Biodiversity, Ecology and Global Change” co-financed by North Portugal Regional Operational Programme 2007/2013 (ON.2), under the NSRF, ERDF.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/jeb.1271
    corecore