172 research outputs found

    Bilateral linear scleroderma "en coup de sabre" associated with facial atrophy and neurological complications

    Get PDF
    BACKGROUND: Linear scleroderma "en coup de sabre" (LSCS) usually affects one side of the face and head in the frontoparietal area with band-like indurated skin lesions. The disease may be associated with facial hemiatrophy. Various ophthalmological and neurological abnormalities have been observed in patients with LSCS. We describe an unusual case of LSC. CASE PRESENTATION: A 23 year old woman presented bilateral LSCS and facial atrophy. The patient had epileptic seizures as well as oculomotor and facial nerve palsy on the left side which also had pronounced skin involvement. Clinical features of different stages of the disease are presented. CONCLUSIONS: The findings of the presented patient with bilateral LSCS and facial atrophy provide further evidence for a neurological etiology of the disease and may also indicate that classic progressive facial hemiatrophy (Parry-Romberg syndrome) and LSCS actually represent different spectra of the same disease

    Macular sensitivity and fixation patterns in normal eyes and eyes with uveitis with and without macular edema

    Get PDF
    PURPOSE: This study aims to investigate the relationship between macular sensitivity and thickness in eyes with uveitic macular edema (UME). DESIGN: This study is a prospective observational case series. METHODS: The setting for this study was clinical practice. The study included 59 (28 with UME, 31 without UME) eyes of 26 patients with uveitis and 19 eyes of 10 normal subjects. The procedure followed was fundus-related perimetry and retinal thickness map with an automated fundus perimetry/tomography system. Main outcome measures included quantification of macular sensitivity, fixation pattern, and relationship between macular sensitivity and thickness. RESULTS: Fixation stability revealed that 56 eyes (93.44%) had stable fixation (\u3e75% within the central 2° of point of fixation); three eyes (6.56%) were relatively unstable (75% located within 4°); and no eye had unstable fixation (50% of fixation point within 0.5 mm of foveal center); seven eyes (11.86%) had peri-central fixation location (25% \u3c 50% within 0.5 mm); and seven eyes (11.86%) had eccentric (280 μm. CONCLUSIONS: Perimetry quantification of macular sensitivity and retinal thickness, in association with other factors, may offer novel information regarding the impact of UME on retinal function

    Clinical Remission of Sight-Threatening Non-Infectious Uveitis Is Characterized by an Upregulation of Peripheral T-Regulatory Cell Polarized Towards T-bet and TIGIT.

    Get PDF
    Background: Non-infectious uveitis can cause chronic relapsing and remitting ocular inflammation, which may require high dose systemic immunosuppression to prevent severe sight loss. It has been classically described as an autoimmune disease, mediated by pro-inflammatory Th1 and Th17 T-cell subsets. Studies suggest that natural immunosuppressive CD4+CD25+FoxP3+ T-regulatory cells (Tregs) are involved in resolution of inflammation and may be involved in the maintenance of clinical remission. Objective: To investigate whether there is a peripheral blood immunoregulatory phenotype associated with clinical remission of sight-threatening non-infectious uveitis by comparing peripheral blood levels of Treg, Th1, and Th17, and associated DNA methylation and cytokine levels in patients with active uveitic disease, control subjects and patients (with previously active disease) in clinical remission induced by immunosuppressive drugs. Methods: Isolated peripheral blood mononuclear cells (PBMC) from peripheral blood samples from prospectively recruited subjects were analyzed by flow cytometry for CD3, CD4, FoxP3, TIGIT, T-bet, and related orphan receptor γt. Epigenetic DNA methylation levels of FOXP3 Treg-specific demethylated region (TSDR), FOXP3 promoter, TBX21, RORC2, and TIGIT loci were determined in cryopreserved PBMC using a next-generation sequencing approach. Related cytokines were measured in blood sera. Functional suppressive capacity of Treg was assessed using T-cell proliferation assays. Results: Fifty patients with uveitis (intermediate, posterior, and panuveitis) and 10 control subjects were recruited. The frequency of CD4+CD25+FoxP3+ Treg, TIGIT+ Treg, and T-bet+ Treg and the ratio of Treg to Th1 were significantly higher in remission patients compared with patients with active uveitic disease; and TIGIT+ Tregs were a significant predictor of clinical remission. Treg from patients in clinical remission demonstrated a high level of in vitro suppressive function compared with Treg from control subjects and from patients with untreated active disease. PBMC from patients in clinical remission had significantly lower methylation levels at the FOXP3 TSDR, FOXP3 promoter, and TIGIT loci and higher levels at RORC loci than those with active disease. Clinical remission was also associated with significantly higher serum levels of transforming growth factor β and IL-10, which positively correlated with Treg levels, and lower serum levels of IFNγ, IL-17A, and IL-22 compared with patients with active disease. Conclusion: Clinical remission of sight-threatening non-infectious uveitis has an immunoregulatory phenotype characterized by upregulation of peripheral Treg, polarized toward T-bet and TIGIT. These findings may assist with individualized therapy of uveitis, by informing whether drug therapy has induced phenotypically stable Treg associated with long-term clinical remission

    AAV2-Mediated Combined Subretinal Delivery of IFN-α and IL-4 Reduces the Severity of Experimental Autoimmune Uveoretinitis

    Get PDF
    We previously showed that adeno-associated virus 2 (AAV2) mediated subretinal delivery of human interferon-alpha (IFN-α) could effectively inhibit experimental autoimmune uveoretinitis (EAU). In this study we investigated whether subretinal injection of both AVV2.IFN-α and AAV2.IL-4 had a stronger inhibition on EAU activity. B10RIII mice were subretinally injected with AAV2.IFN-α alone (1.5×107 vg), AAV2.IL-4 alone (3.55×107 vg), and AAV2.IFN-α combined with AAV2.IL-4. PBS, AAV2 vector encoding green fluorescent protein (AAV2.GFP) (5×107 vg) was subretinally injected as a control. IFN-α and IL-4 were effectively expressed in the eyes from three weeks to three months following subretinal injection of AAV2 vectors either alone or following combined administration and significantly attenuated EAU activity clinically and histopathologically. AAV2.IL-4 showed a better therapeutic effect as compared to AAV2.IFN-α. The combination of AAV2.IL-4 and AAV2.IFN-α was not significantly different as compared to AAV2.IL-4 alone. There was no difference concerning DTH (delayed-type hypersensitivity) reaction, lymphocyte proliferation and IL-17 production among the investigated treatment groups, suggesting that local retinal gene delivery did not affect the systemic immune response

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    Much Ado About the TPP’s Effect on Pharmaceuticals

    Get PDF
    Ocular antigens are sequestered behind the blood-retina barrier and the ocular environment protects ocular tissues from autoimmune attack. The signals required to activate autoreactive T cells and allow them to cause disease in the eye remain in part unclear. In particular, the consequences of peripheral presentation of ocular antigens are not fully understood. We examined peripheral expression and presentation of ocular neo-self-antigen in transgenic mice expressing hen egg lysozyme (HEL) under a retina-specific promoter. High levels of HEL were expressed in the eye compared to low expression throughout the lymphoid system. Adoptively transferred naïve HEL-specific CD4+ T cells proliferated in the eye draining lymph nodes, but did not induce uveitis. By contrast, systemic infection with a murine cytomegalovirus (MCMV) engineered to express HEL induced extensive proliferation of transferred naïve CD4+ T cells, and significant uveoretinitis. In this model, wild-type MCMV, lacking HEL, did not induce overt uveitis, suggesting that disease is mediated by antigen-specific peripherally activated CD4+ T cells that infiltrate the retina. Our results demonstrate that retinal antigen is presented to T cells in the periphery under physiological conditions. However, when the same antigen is presented during viral infection, antigen-specific T cells access the retina and autoimmune uveitis ensues

    Diagnostic techniques for inflammatory eye disease: past, present and future: a review

    Get PDF
    Investigations used to aid diagnosis and prognosticate outcomes in ocular inflammatory disorders are based on techniques that have evolved over the last two centuries have dramatically evolved with the advances in molecular biological and imaging technology. Our improved understanding of basic biological processes of infective drives of innate immunity bridging the engagement of adaptive immunity have formed techniques to tailor and develop assays, and deliver targeted treatment options. Diagnostic techniques are paramount to distinguish infective from non-infective intraocular inflammatory disease, particularly in atypical cases. The advances have enabled our ability to multiplex assay small amount of specimen quantities of intraocular samples including aqueous, vitreous or small tissue samples. Nevertheless to achieve diagnosis, techniques often require a range of assays from traditional hypersensitivity reactions and microbe specific immunoglobulin analysis to modern molecular techniques and cytokine analysis. Such approaches capitalise on the advantages of each technique, thereby improving the sensitivity and specificity of diagnoses. This review article highlights the development of laboratory diagnostic techniques for intraocular inflammatory disorders now readily available to assist in accurate identification of infective agents and appropriation of appropriate therapies as well as formulating patient stratification alongside clinical diagnoses into disease groups for clinical trials

    A systematic review and economic evaluation of adalimumab and dexamethasone for treating non-infectious intermediate, posterior or panuveitis in adults

    Get PDF
    Background: Non-infectious intermediate uveitis, posterior uveitis and panuveitis are a heterogeneous group of inflammatory eye disorders. Management includes local and systemic corticosteroids, immunosuppressants and biologic drugs. Objectives: To evaluate clinical and cost-effectiveness of subcutaneous adalimumab and dexamethasone intravitreal implant in adults with non-infectious intermediate, posterior or panuveitis. Methods: Nine electronic databases were searched to June 2016. A Markov model was developed to assess cost-effectiveness of dexamethasone and adalimumab, each compared with current practice, from an NHS and PSS perspective over a lifetime horizon, parameterised with published evidence. Costs and benefits were discounted at 3.5%. Substantial sensitivity analyses were undertaken. Results: Two studies (VISUAL I, active uveitis; and VISUAL II, inactive uveitis) compared adalimumab against placebo, plus limited standard care in both arms. Time to treatment failure (reduced visual acuity, intraocular inflammation, new vascular lesions) was longer for adalimumab than placebo, with hazard ratio 0.50 (95% CI 0.36 to 0.70, p<0.001) in VISUAL I and 0.57 (0.39 to 0.84, p=0.004) in VISUAL II. Adalimumab provided significantly greater improvement in VFQ-25 composite score in VISUAL I (mean difference, 4.20; p=0.010) but not VISUAL II (mean difference, 2.12; p=0.16). Some systemic adverse effects occurred more frequently with adalimumab than placebo. One study (HURON, active uveitis) compared single 0.7mg dexamethasone implant against sham, plus limited standard care in both arms. Dexamethasone provided significant benefits over sham at 8 and 26 weeks in percentage of patients with vitreous haze score zero (p<0.014); mean BCVA improvement (p≤0.002); and percentage of patients with ≥5-point improvement in VFQ-25 (p<0.05). Raised intraocular pressure and cataracts occurred more frequently with dexamethasone than sham. The incremental cost-effectiveness ratio (ICER) of one dexamethasone implant in one eye for a combination of patients with unilateral and bilateral uveitis, compared with limited current practice as per the HURON trial, is estimated as £19,509 per quality-adjusted life year (QALY) gained. The ICER of adalimumab for patients with mainly bilateral uveitis, compared with limited current practice as per the VISUAL trials, is estimated as £94,523 and £317,547 per QALY gained in active and inactive uveitis respectively. Sensitivity analyses suggest rate of blindness has the biggest impact upon model results. The interventions may be more cost-effective in populations where there is a greater risk of blindness. Limitations: The clinical trials did not fully reflect clinical practice. Thirteen studies of clinically-relevant comparator treatments were identified; however, network meta-analysis was not feasible. The model results are highly uncertain due to the limited evidence base. Conclusions: Two RCTs of systemic adalimumab and one RCT of unilateral, single dexamethasone implant showed significant benefits over placebo or sham. The ICERs for adalimumab are estimated to be above generally accepted thresholds for cost-effectiveness. The cost-effectiveness of dexamethasone is estimated to fall below standard thresholds. However there is substantial uncertainty around the model assumptions. Future work: Primary research should compare dexamethasone and adalimumab with current treatments over the long term, and in important subgroups, and consider how short-term improvements relate to long-term effects on vision. Study registration: PROSPERO CRD42016041799 Funding details: NIHR HTA Programm
    corecore