137 research outputs found
A Case Report: Lobular Carcinoma In Situ in a Male Patient with Subsequent Invasive Ductal Carcinoma Identified on Screening Breast MRI
Lobular carcinoma in situ is a form of in situ neoplasia that develops within the terminal lobules of the breast. It is an extremely rare finding in males due to the lack of lobular development in the male breast. The authors herein report an unusual case of incidentally discovered lobular carcinoma in situ in a male patient with recurrent bilateral gynecomastia who was subsequently diagnosed with invasive ductal carcinoma of the left breast. The pathology of lobular carcinoma in situ in a male as well as screening MRI surveillance of male patients at high risk for breast cancer are discussed, emphasizing the importance of screening and imaging follow up in men who are at high risk for breast cancer
The ZNF217 Biomarker Predicts Low- and High-Risk Oncotype DXÂź Recurrence Score in ER-Positive Invasive Breast Cancers
We assessed mRNA and protein expression levels of the ZN217 oncogene in 17 clinical FFPE ER-positive invasive breast cancer specimens with known (low or high) Oncotype DXÂź Recurrence Scores. This study shows that mRNA or nuclear protein levels of the ZNF217 significantly correlate with Oncotype DXÂź Recurrence Score
The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group
The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC
Analytical validation of a standardised scoring protocol for Ki67 immunohistochemistry on breast cancer excision whole sections: an international multicentre collaboration
Aims The nuclear proliferation marker Ki67 assayed by immunohistochemistry has multiple potential uses in breast cancer, but an unacceptable level of interlaboratory variability has hampered its clinical utility. The International Ki67 in Breast Cancer Working Group has undertaken a systematic programme to determine whether Ki67 measurement can be analytically validated and standardised among laboratories. This study addresses whether acceptable scoring reproducibility can be achieved on excision whole sections. Methods and results Adjacent sections from 30 primary ER+ breast cancers were centrally stained for Ki67 and sections were circulated among 23 pathologists in 12 countries. All pathologists scored Ki67 by two methods: (i) global: four fields of 100 tumour cells each were selected to reflect observed heterogeneity in nuclear staining; (ii) hot-spot: the field with highest apparent Ki67 index was selected and up to 500 cells scored. The intraclass correlation coefficient (ICC) for the global method [confidence interval (CI) = 0.87; 95% CI = 0.799-0.93] marginally met the prespecified success criterion (lower 95% CI >= 0.8), while the ICC for the hot-spot method (0.83; 95% CI = 0.74-0.90) did not. Visually, interobserver concordance in location of selected hot-spots varies between cases. The median times for scoring were 9 and 6 min for global and hot-spot methods, respectively. Conclusions The global scoring method demonstrates adequate reproducibility to warrant next steps towards evaluation for technical and clinical validity in appropriate cohorts of cases. The time taken for scoring by either method is practical using counting software we are making publicly available. Establishment of external quality assessment schemes is likely to improve the reproducibility between laboratories further
Analytical validation of a standardized scoring protocol for Ki67: phase 3 of an international multicenter collaboration
Pathological analysis of the nuclear proliferation biomarker Ki67 has multiple potential roles in breast and other cancers. However, clinical utility of the immunohistochemical (IHC) assay for Ki67 immunohistochemistry has been hampered by unacceptable between-laboratory analytical variability. The International Ki67 Working Group has conducted a series of studies aiming to decrease this variability and improve the evaluation of Ki67. This study tries to assess whether acceptable performance can be achieved on prestained core-cut biopsies using a standardized scoring method. Sections from 30 primary ER+ breast cancer core biopsies were centrally stained for Ki67 and circulated among 22 laboratories in 11 countries. Each laboratory scored Ki67 using three methods: (1) global (4 fields of 100 cells each); (2) weighted global (same as global but weighted by estimated percentages of total area); and (3) hot-spot (single field of 500 cells). The intraclass correlation coefficient (ICC), a measure of interlaboratory agreement, for the unweighted global method (0.87; 95% credible interval (CI): 0.81â0.93) met the prespecified success criterion for scoring reproducibility, whereas that for the weighted global (0.87; 95% CI: 0.7999â0.93) and hot-spot methods (0.84; 95% CI: 0.77â0.92) marginally failed to do so. The unweighted global assessment of Ki67 IHC analysis on core biopsies met the prespecified criterion of success for scoring reproducibility. A few cases still showed large scoring discrepancies. Establishment of external quality assessment schemes is likely to improve the agreement between laboratories further. Additional evaluations are needed to assess staining variability and clinical validity in appropriate cohorts of samples
Effective DNA/RNA Co-Extraction for Analysis of MicroRNAs, mRNAs, and Genomic DNA from Formalin-Fixed Paraffin-Embedded Specimens
Background: Retrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffinembedded (FFPE) DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens. Principal Findings: For effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll TM Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and-RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and âRNA tha
Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer
Stromal tumor-infiltrating lymphocytes (sTILs) are important prognostic and predictive biomarkers in triple-negative (TNBC) and HER2-positive breast cancer. Incorporating sTILs into clinical practice necessitates reproducible assessment. Previously developed standardized scoring guidelines have been widely embraced by the clinical and research communities. We evaluated sources of variability in sTIL assessment by pathologists in three previous sTIL ring studies. We identify common challenges and evaluate impact of discrepancies on outcome estimates in early TNBC using a newly-developed prognostic tool. Discordant sTIL assessment is driven by heterogeneity in lymphocyte distribution. Additional factors include: technical slide-related issues; scoring outside the tumor boundary; tumors with minimal assessable stroma; including lymphocytes associated with other structures; and including other inflammatory cells. Small variations in sTIL assessment modestly alter risk estimation in early TNBC but have the potential to affect treatment selection if cutpoints are employed. Scoring and averaging multiple areas, as well as use of reference images, improve consistency of sTIL evaluation. Moreover, to assist in avoiding the pitfalls identified in this analysis, we developed an educational resource available at www.tilsinbreastcancer.org/pitfalls.Stromal tumor-infiltrating lymphocytes (sTILs) are important prognostic and predictive biomarkers in triple-negative (TNBC) and HER2-positive breast cancer. Incorporating sTILs into clinical practice necessitates reproducible assessment. Previously developed standardized scoring guidelines have been widely embraced by the clinical and research communities. We evaluated sources of variability in sTIL assessment by pathologists in three previous sTIL ring studies. We identify common challenges and evaluate impact of discrepancies on outcome estimates in early TNBC using a newly-developed prognostic tool. Discordant sTIL assessment is driven by heterogeneity in lymphocyte distribution. Additional factors include: technical slide-related issues; scoring outside the tumor boundary; tumors with minimal assessable stroma; including lymphocytes associated with other structures; and including other inflammatory cells. Small variations in sTIL assessment modestly alter risk estimation in early TNBC but have the potential to affect treatment selection if cutpoints are employed. Scoring and averaging multiple areas, as well as use of reference images, improve consistency of sTIL evaluation. Moreover, to assist in avoiding the pitfalls identified in this analysis, we developed an educational resource available at www.tilsinbreastcancer.org/pitfalls.Peer reviewe
Identification of a BRCA2-Specific modifier locus at 6p24 related to breast cancer risk
Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HRâ=â0.85, 95% CI 0.80-0.90, Pâ=â3.9Ă10â8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer
Assessing associations between the AURKAHMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers
While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood appr
- âŠ