32 research outputs found

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p &lt; 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p &gt; 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification

    Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images

    Get PDF
    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease

    Independent and combined effects of improved water, sanitation, and hygiene, and improved complementary feeding, on child stunting and anaemia in rural Zimbabwe: a cluster-randomised trial.

    Get PDF
    BACKGROUND: Child stunting reduces survival and impairs neurodevelopment. We tested the independent and combined effects of improved water, sanitation, and hygiene (WASH), and improved infant and young child feeding (IYCF) on stunting and anaemia in in Zimbabwe. METHODS: We did a cluster-randomised, community-based, 2 × 2 factorial trial in two rural districts in Zimbabwe. Clusters were defined as the catchment area of between one and four village health workers employed by the Zimbabwe Ministry of Health and Child Care. Women were eligible for inclusion if they permanently lived in clusters and were confirmed pregnant. Clusters were randomly assigned (1:1:1:1) to standard of care (52 clusters), IYCF (20 g of a small-quantity lipid-based nutrient supplement per day from age 6 to 18 months plus complementary feeding counselling; 53 clusters), WASH (construction of a ventilated improved pit latrine, provision of two handwashing stations, liquid soap, chlorine, and play space plus hygiene counselling; 53 clusters), or IYCF plus WASH (53 clusters). A constrained randomisation technique was used to achieve balance across the groups for 14 variables related to geography, demography, water access, and community-level sanitation coverage. Masking of participants and fieldworkers was not possible. The primary outcomes were infant length-for-age Z score and haemoglobin concentrations at 18 months of age among children born to mothers who were HIV negative during pregnancy. These outcomes were analysed in the intention-to-treat population. We estimated the effects of the interventions by comparing the two IYCF groups with the two non-IYCF groups and the two WASH groups with the two non-WASH groups, except for outcomes that had an important statistical interaction between the interventions. This trial is registered with ClinicalTrials.gov, number NCT01824940. FINDINGS: Between Nov 22, 2012, and March 27, 2015, 5280 pregnant women were enrolled from 211 clusters. 3686 children born to HIV-negative mothers were assessed at age 18 months (884 in the standard of care group from 52 clusters, 893 in the IYCF group from 53 clusters, 918 in the WASH group from 53 clusters, and 991 in the IYCF plus WASH group from 51 clusters). In the IYCF intervention groups, the mean length-for-age Z score was 0·16 (95% CI 0·08-0·23) higher and the mean haemoglobin concentration was 2·03 g/L (1·28-2·79) higher than those in the non-IYCF intervention groups. The IYCF intervention reduced the number of stunted children from 620 (35%) of 1792 to 514 (27%) of 1879, and the number of children with anaemia from 245 (13·9%) of 1759 to 193 (10·5%) of 1845. The WASH intervention had no effect on either primary outcome. Neither intervention reduced the prevalence of diarrhoea at 12 or 18 months. No trial-related serious adverse events, and only three trial-related adverse events, were reported. INTERPRETATION: Household-level elementary WASH interventions implemented in rural areas in low-income countries are unlikely to reduce stunting or anaemia and might not reduce diarrhoea. Implementation of these WASH interventions in combination with IYCF interventions is unlikely to reduce stunting or anaemia more than implementation of IYCF alone. FUNDING: Bill & Melinda Gates Foundation, UK Department for International Development, Wellcome Trust, Swiss Development Cooperation, UNICEF, and US National Institutes of Health.The SHINE trial is funded by the Bill & Melinda Gates Foundation (OPP1021542 and OPP113707); UK Department for International Development; Wellcome Trust, UK (093768/Z/10/Z, 108065/Z/15/Z and 203905/Z/16/Z); Swiss Agency for Development and Cooperation; US National Institutes of Health (2R01HD060338-06); and UNICEF (PCA-2017-0002)

    Consensus statement on continuous EEG in critically Ill adults and children, part I: Indications

    No full text
    © 2015 by the American Clinical Neurophysiology Society. Introduction: Critical Care Continuous EEG (CCEEG) is a common procedure to monitor brain function in patients with altered mental status in intensive care units. There is significant variability in patient populations undergoing CCEEG and in technical specifications for CCEEG performance. Methods: The Critical Care Continuous EEG Task Force of the American Clinical Neurophysiology Society developed expert consensus recommendations on the use of CCEEG in critically ill adults and children. Recommendations: The consensus panel recommends CCEEG for diagnosis of nonconvulsive seizures, nonconvulsive status epilepticus, and other paroxysmal events, and for assessment of the efficacy of therapy for seizures and status epilepticus. The consensus panel suggests CCEEG for identification of ischemia in patients at high risk for cerebral ischemia; for assessment of level of consciousness in patients receiving intravenous sedation or pharmacologically induced coma; and for prognostication in patients after cardiac arrest. For each indication, the consensus panel describes the patient populations for which CCEEG is indicated, evidence supporting use of CCEEG, utility of video and quantitative EEG trends, suggested timing and duration of CCEEG, and suggested frequency of review and interpretation. Conclusion: CCEEG has an important role in detection of secondary injuries such as seizures and ischemia in critically ill adults and children with altered mental statu

    Consensus statement on continuous EEG in critically Ill adults and children, Part II: Personnel, technical specifications, and clinical practice

    No full text
    © 2015 by the American Clinical Neurophysiology Society.. Introduction: Critical Care Continuous EEG (CCEEG) is a common procedure to monitor brain function in patients with altered mental status in intensive care units. There is significant variability in patient populations undergoing CCEEG and in technical specifications for CCEEG performance. Methods: The Critical Care Continuous EEG Task Force of the American Clinical Neurophysiology Society developed expert consensus recommendations on the use of CCEEG in critically ill adults and children. Recommendations: The consensus panel describes the qualifications and responsibilities of CCEEG personnel including neurodiagnostic technologists and interpreting physicians. The panel outlines required equipment for CCEEG, including electrodes, EEG machine and amplifier specifications, equipment for polygraphic data acquisition, EEG and video review machines, central monitoring equipment, and network, remote access, and data storage equipment. The consensus panel also describes how CCEEG should be acquired, reviewed and interpreted. The panel suggests methods for patient selection and triage; initiation of CCEEG; daily maintenance of CCEEG; electrode removal and infection control; quantitative EEG techniques; EEG and behavioral monitoring by non-physician personnel; review, interpretation, and reports; and data storage protocols. Conclusion: Recommended qualifications for CCEEG personnel and CCEEG technical specifications will facilitate standardization of this emerging technolog
    corecore