43 research outputs found

    Translation Based Face Recognition Using Fusion of LL and SV Coefficients

    Get PDF
    The face is a physiological trait used to identify a person effectively for various biometric applications. In this paper we propose Translation based Face Recognition using Fusion of LL and SV coefficients. The novel concept of translating many sample images of a single person into one sample per person is introduced. The face database images are preprocessed using Gaussian filter and DWT to generate LL coefficients. The support vectors (SV) are obtained from support vector machine (SVM) for LL coefficients. The LL and SVs are fused using arithmetic addition to generate final features. The face database and test face image features are compared using Euclidean Distance (ED) to compute the performance parameters.

    Multi scale ICA based iris recognition using BSIF and Hog

    Get PDF
    Iris is a physiological biometric trait, which is unique among all biometric traits to recognize person effectively. In this paper we propose Multi-scale Independent Component Analysis (ICA) based Iris Recognition using Binarized Statistical Image Features (BSIF) and Histogram of Gradient orientation (HOG). The Left and Right portion is extracted from eye images of CASIA V 1.0 database leaving top and bottom portion of iris. The multi-scale ICA filter sizes of 5X5, 7X7 and 17X17 are used to correlate with iris template to obtain BSIF. The HOGs are applied on BSIFs to extract initial features. The final feature is obtained by fusing three HOGs. The Euclidian Distance is used to compare the final feature of database image with test image final features to compute performance parameters. It is observed that the performance of the proposed method is better compared to existing methods

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
    corecore