575 research outputs found

    Labor Law - National Labor Relations Board - Effect of the NLRB\u27s Refusal to Take Jurisdiction

    Get PDF
    Appellant corporation was charged by the United Steelworkers of America with unfair labor practices in violation of sections 8(a)(1), (3) and (5) of the National Labor Relations Act. Although appellant\u27s business affected commerce within the meaning of the act, the acting regional director of the NLRB declined to issue a complaint because the company\u27s volume of business did not meet the Board\u27s revised minimum jurisdictional standards. The union then filed substantially the same charges with the Utah Labor Relations Board. The Utah Board\u27s determination that it had jurisdiction was affirmed by the Utah Supreme Court. On certiorari to the Supreme Court of the United States, held, reversed, two justices dissenting. The proviso to section 10(a) of the NLRA offers the exclusive means whereby states may assume jurisdiction over matters which Congress has entrusted to the NLRB. Guss v. Utah Labor Board, 353 U.S. I (1957)

    Rapidly Decaying Supernova 2010X: A Candidate ".Ia" Explosion

    Full text link
    We present the discovery, photometric and spectroscopic follow-up observations of SN 2010X (PTF 10bhp). This supernova decays exponentially with tau_d=5 days, and rivals the current recordholder in speed, SN 2002bj. SN 2010X peaks at M_r=-17mag and has mean velocities of 10,000 km/s. Our light curve modeling suggests a radioactivity powered event and an ejecta mass of 0.16 Msun. If powered by Nickel, we show that the Nickel mass must be very small (0.02 Msun) and that the supernova quickly becomes optically thin to gamma-rays. Our spectral modeling suggests that SN 2010X and SN 2002bj have similar chemical compositions and that one of Aluminum or Helium is present. If Aluminum is present, we speculate that this may be an accretion induced collapse of an O-Ne-Mg white dwarf. If Helium is present, all observables of SN 2010X are consistent with being a thermonuclear Helium shell detonation on a white dwarf, a ".Ia" explosion. With the 1-day dynamic-cadence experiment on the Palomar Transient Factory, we expect to annually discover a few such events.Comment: 6 pages, 5 figures; Minor Changes; Note correction in Fig 4 caption; published by ApJ

    Constraints on the Progenitor System of the Type Ia Supernova SN 2011fe/PTF11kly

    Full text link
    Type Ia supernovae (SNe) serve as a fundamental pillar of modern cosmology, owing to their large luminosity and a well-defined relationship between light-curve shape and peak brightness. The precision distance measurements enabled by SNe Ia first revealed the accelerating expansion of the universe, now widely believed (though hardly understood) to require the presence of a mysterious "dark" energy. General consensus holds that Type Ia SNe result from thermonuclear explosions of a white dwarf (WD) in a binary system; however, little is known of the precise nature of the companion star and the physical properties of the progenitor system. Here we make use of extensive historical imaging obtained at the location of SN 2011fe/PTF11kly, the closest SN Ia discovered in the digital imaging era, to constrain the visible-light luminosity of the progenitor to be 10-100 times fainter than previous limits on other SN Ia progenitors. This directly rules out luminous red giants and the vast majority of helium stars as the mass-donating companion to the exploding white dwarf. Any evolved red companion must have been born with mass less than 3.5 times the mass of the Sun. These observations favour a scenario where the exploding WD of SN 2011fe/PTF11kly, accreted matter either from another WD, or by Roche-lobe overflow from a subgiant or main-sequence companion star.Comment: 22 pages, 6 figures, submitte

    Blended foods for tube-fed children: a safe and realistic option? A rapid review of the evidence

    Get PDF
    With the growing number of children and young people with complex care needs or life-limiting conditions, alternative routes for nutrition have been established (such as gastrostomy feeding). The conditions of children and young people who require such feeding are diverse but could relate to problems with swallowing (dysphagia), digestive disorders or neurological/muscular disorders. However, the use of a blended diet as an alternative to prescribed formula feeds for children fed via a gastrostomy is a contentious issue for clinicians and researchers. From a rapid review of the literature, we identify that current evidence falls into three categories: (1) those who feel that the use of a blended diet is unsafe and substandard; (2) those who see benefits of such a diet as an alternative in particular circumstances (eg, to reduce constipation) and (3) those who see merit in the blended diet but are cautious to proclaim potential benefits due to the lack of clinical research. There may be some benefits to using blended diets, although concerns around safety, nutrition and practical issues remain

    Calibration and Characterization of the IceCube Photomultiplier Tube

    Full text link
    Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts.Comment: 40 pages, 12 figure

    Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of December 27th, 2004 with the AMANDA-II detector

    Get PDF
    On December 27th 2004, a giant gamma flare from the Soft Gamma-ray Repeater 1806-20 saturated many satellite gamma-ray detectors. This event was by more than two orders of magnitude the brightest cosmic transient ever observed. If the gamma emission extends up to TeV energies with a hard power law energy spectrum, photo-produced muons could be observed in surface and underground arrays. Moreover, high-energy neutrinos could have been produced during the SGR giant flare if there were substantial baryonic outflow from the magnetar. These high-energy neutrinos would have also produced muons in an underground array. AMANDA-II was used to search for downgoing muons indicative of high-energy gammas and/or neutrinos. The data revealed no significant signal. The upper limit on the gamma flux at 90% CL is dN/dE < 0.05 (0.5) TeV^-1 m^-2 s^-1 for gamma=-1.47 (-2). Similarly, we set limits on the normalization constant of the high-energy neutrino emission of 0.4 (6.1) TeV^-1 m^-2 s^-1 for gamma=-1.47 (-2).Comment: 14 pages, 3 figure

    Structure and dynamics of single-isoform recombinant Neuronal Human Tubulin

    Get PDF
    Microtubules are polymers that cycle stochastically between polymerization and depolymerization i.e., they exhibit 'dynamic instability'. This behavior is crucial for cell division, motility and differentiation. While studies in the last decade have made fundamental breakthroughs in our understanding of how cellular effectors modulate microtubule dynamics, analysis of the relationship between tubulin sequence, structure and dynamics has been held back by a lack of dynamics measurements with and structural characterization of homogenous, isotypically pure, engineered tubulin. Here we report for the first time the cryo-EM structure and in vitro dynamics parameters of recombinant isotypically pure human tubulin. α1A/βIII is a purely neuronal tubulin isoform. The 4.2 Å structure of unmodified human α1A/βIII microtubules shows overall similarity to that of heterogeneous brain microtubules, but is distinguished by subtle differences at polymerization interfaces, which are hotspots for sequence divergence between tubulin isoforms. In vitro dynamics assays show that, like mosaic brain microtubules, recombinant homogenous microtubules undergo dynamic instability but they polymerize slower and catastrophe less frequently. Interestingly, we find that epitaxial growth of α1A/βIII microtubules from heterogeneous brain seeds is inefficient, but can be fully rescued by incorporating as little as 5% of brain tubulin into the homogenous α1A/βIII lattice. Our study establishes a system to examine the structure and dynamics of mammalian microtubules with well-defined tubulin species and is a first and necessary step towards uncovering how tubulin genetic and chemical diversity is exploited to modulate intrinsic microtubule dynamics
    corecore