502 research outputs found
The vegetation of the proposed coastal National Botanic Garden, East London
The vegetation of the proposed National Botanic Garden in East London was sampled in 79 100-m2 quadrats and classified using TWINSPAN. Seven plant communities were identified, namely Acacia savanna, riverine forest, riverine thicket, coastal forest, coast scrub, dune margin scrub and a xerophytic community associated with the rocky promontories. DECORANA was used to determine the relationship between these communities and identified a gradient from the rocky promotories through dune margin scrub and coastal scrub to forest on the first axis and a gradient from Acacia savanna to forest on the second axis. Studies of aerial photographs and an old painting of the beach front showed that in this windy coastal environment the vegetation has remained stable for some time. Of the 71 families recorded, Poaceae and Asteraceae dominate the area in terms of genera and species numbers, although woody plants total more than 45% of the species. The trees and shrubs are distributed among the many families of the Tongoland – Pondoland floristic region, thus the area is floristically more subtropical than Cape. Alien vegetation covers a small area and with sound management can easily be eradicated. Recommendations are made for the conservation of the region, the construction of parking facilities, tea-rooms, picnic spots and carefully designed paths and boardwalks for the public to visit and learn more about the indigeous coastal flora
Astrophysical constraints on primordial black holes in Brans-Dicke theory
We consider cosmological evolution in Brans-Dicke theory with a population of
primordial black holes. Hawking radiation from the primordial black holes
impacts various astrophysical processes during the evolution of the Universe.
The accretion of radiation by the black holes in the radiation dominated era
may be effective in imparting them a longer lifetime. We present a detailed
study of how this affects various standard astrophysical constraints coming
from the evaporation of primordial black holes. We analyze constraints from the
present density of the Universe, the present photon spectrum, the distortion of
the cosmic microwave background spectrum and also from processes affecting
light element abundances after nucleosynthesis. We find that the constraints on
the initial primordial black hole mass fractions are tightened with increased
accretion efficiency.Comment: 15 page
Particle Acceleration in Cosmic Sites - Astrophysics Issues in our Understanding of Cosmic Rays
Laboratory experiments to explore plasma conditions and stimulated particle
acceleration can illuminate aspects of the cosmic particle acceleration
process. Here we discuss the cosmic-ray candidate source object variety, and
what has been learned about their particle-acceleration characteristics. We
identify open issues as discussed among astrophysicists. -- The cosmic ray
differential intensity spectrum is a rather smooth power-law spectrum, with two
kinks at the "knee" (~10^15 eV) and at the "ankle" (~3 10^18 eV). It is unclear
if these kinks are related to boundaries between different dominating sources,
or rather related to characteristics of cosmic-ray propagation. We believe that
Galactic sources dominate up to 10^17 eV or even above, and the extragalactic
origin of cosmic rays at highest energies merges rather smoothly with Galactic
contributions throughout the 10^15--10^18 eV range. Pulsars and supernova
remnants are among the prime candidates for Galactic cosmic-ray production,
while nuclei of active galaxies are considered best candidates to produce
ultrahigh-energy cosmic rays of extragalactic origin. Acceleration processes
are related to shocks from violent ejections of matter from energetic sources
such as supernova explosions or matter accretion onto black holes. Details of
such acceleration are difficult, as relativistic particles modify the structure
of the shock, and simple approximations or perturbation calculations are
unsatisfactory. This is where laboratory plasma experiments are expected to
contribute, to enlighten the non-linear processes which occur under such
conditions.Comment: accepted for publication in EPJD, topical issue on Fundamental
physics and ultra-high laser fields. From review talk at "Extreme Light
Infrastructure" workshop, Sep 2008. Version-2 May 2009: adjust some wordings
and references at EPJD proofs stag
Sliding Luttinger liquid phases
We study systems of coupled spin-gapped and gapless Luttinger liquids. First,
we establish the existence of a sliding Luttinger liquid phase for a system of
weakly coupled parallel quantum wires, with and without disorder. It is shown
that the coupling can {\it stabilize} a Luttinger liquid phase in the presence
of disorder. We then extend our analysis to a system of crossed Luttinger
liquids and establish the stability of a non-Fermi liquid state: the crossed
sliding Luttinger liquid phase (CSLL). In this phase the system exhibits a
finite-temperature, long-wavelength, isotropic electric conductivity that
diverges as a power law in temperature as . This two-dimensional
system has many properties of a true isotropic Luttinger liquid, though at zero
temperature it becomes anisotropic. An extension of this model to a
three-dimensional stack exhibits a much higher in-plane conductivity than the
conductivity in a perpendicular direction.Comment: Revtex, 18 pages, 8 figure
Larkin-Ovchinnikov-Fulde-Ferrell state in quasi-one-dimensional superconductors
The properties of a quasi-one-dimensional (quasi-1D) superconductor with {\it
an open Fermi surface} are expected to be unusual in a magnetic field. On the
one hand, the quasi-1D structure of the Fermi surface strongly favors the
formation of a non-uniform state (Larkin-Ovchinnikov-Fulde-Ferrell (LOFF)
state) in the presence of a magnetic field acting on the electron spins. On the
other hand, a magnetic field acting on an open Fermi surface induces a
dimensional crossover by confining the electronic wave-functions wave-functions
along the chains of highest conductivity, which results in a divergence of the
orbital critical field and in a stabilization at low temperature of a cascade
of superconducting phases separated by first order transistions. In this paper,
we study the phase diagram as a function of the anisotropy. We discuss in
details the experimental situation in the quasi-1D organic conductors of the
Bechgaard salts family and argue that they appear as good candidates for the
observation of the LOFF state, provided that their anisotropy is large enough.
Recent experiments on the organic quasi-1D superconductor (TMTSF)ClO
are in agreement with the results obtained in this paper and could be
interpreted as a signature of a high-field superconducting phase. We also point
out the possibility to observe a LOFF state in some quasi-2D organic
superconductors.Comment: 24 pages+17 figures (upon request), RevTex, ORSAY-LPS-24109
A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source
We present a quantitative model of the magnetic energy stored and then
released through magnetic reconnection for a flare on 26 Feb 2004. This flare,
well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only
for a brief, early phase. Throughout the main period of energy release there is
a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare
loops. Our model describes the heating and compression of such a source by
localized, transient magnetic reconnection. It is a three-dimensional
generalization of the Petschek model whereby Alfven-speed retraction following
reconnection drives supersonic inflows parallel to the field lines, which form
shocks heating, compressing, and confining a loop-top plasma plug. The
confining inflows provide longer life than a freely-expanding or
conductively-cooling plasma of similar size and temperature. Superposition of
successive transient episodes of localized reconnection across a current sheet
produces an apparently persistent, localized source of high-temperature
emission. The temperature of the source decreases smoothly on a time scale
consistent with observations, far longer than the cooling time of a single
plug. Built from a disordered collection of small plugs, the source need not
have the coherent jet-like structure predicted by steady-state reconnection
models. This new model predicts temperatures and emission measure consistent
with the observations of 26 Feb 2004. Furthermore, the total energy released by
the flare is found to be roughly consistent with that predicted by the model.
Only a small fraction of the energy released appears in the super-hot source at
any one time, but roughly a quarter of the flare energy is thermalized by the
reconnection shocks over the course of the flare. All energy is presumed to
ultimately appear in the lower-temperature T<20 MK, post-flare loops
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Constraining Strong Baryon-Dark Matter Interactions with Primordial Nucleosynthesis and Cosmic Rays
Self-interacting dark matter (SIDM) was introduced by Spergel & Steinhardt to
address possible discrepancies between collisionless dark matter simulations
and observations on scales of less than 1 Mpc. We examine the case in which
dark matter particles not only have strong self-interactions but also have
strong interactions with baryons. The presence of such interactions will have
direct implications for nuclear and particle astrophysics. Among these are a
change in the predicted abundances from big bang nucleosynthesis (BBN) and the
flux of gamma-rays produced by the decay of neutral pions which originate in
collisions between dark matter and Galactic cosmic rays (CR). From these
effects we constrain the strength of the baryon--dark matter interactions
through the ratio of baryon - dark matter interaction cross section to dark
matter mass, . We find that BBN places a weak upper limit to this ratio . CR-SIDM interactions, however, limit the possible DM-baryon cross
section to ; this rules out an energy-independent
interaction, but not one which falls with center-of-mass velocity as or steeper.Comment: 17 pages, 2 figures; plain LaTeX. To appear in PR
Measuring Cigarette Smoking Risk Perceptions
Risk perception is an important construct in many health behavior theories. Smoking risk perceptions are thoughts and feelings about the harms associated with cigarette smoking. Wide variation in the terminology, definition, and assessment of this construct makes it difficult to draw conclusions about the associations of risk perceptions with smoking behaviors. To understand optimal methods of assessing adults' cigarette smoking risk perceptions (among both smokers and nonsmokers), we reviewed best practices from the tobacco control literature, and where gaps were identified, we looked more broadly to the research on risk perceptions in other health domains. Based on this review, we suggest assessments of risk perceptions (1) about multiple smoking-related health harms, (2) about harms over a specific timeframe, and (3) for the person affected by the harm. For the measurement of perceived likelihood in particular (ie, the perceived chance of harm from smoking based largely on deliberative thought), we suggest including (4) unconditional and conditional items (stipulating smoking behavior) and (5) absolute and comparative items and including (6) comparisons to specific populations through (7) direct and indirect assessments. We also suggest including (8) experiential (ostensibly automatic, somatic perceptions of vulnerability to a harm) and affective (emotional reactions to a potential harm) risk perception items. We also offer suggestions for (9) response options and (10) the assessment of risk perception at multiple time points. Researchers can use this resource to inform the selection, use, and future development of smoking risk perception measures. Implications: Incorporating the measurement suggestions for cigarette smoking risk perceptions that are presented will help researchers select items most appropriate for their research questions and will contribute to greater consistency in the assessment of smoking risk perceptions among adults
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
- …