22 research outputs found

    Thermal Nature of Mantle Upwellings Below the Ibero‐Western Maghreb Region Inferred From Teleseismic Tomography

    Get PDF
    Independent models of P wave and S wave velocity anomalies in the mantle derived from seismic tomography help to distinguish thermal signatures from those of partial melt, volatiles, and compositional variations. Here we use seismic data from SW Europe and NW Africa, spanning the region between the Pyrenees and the Canaries, in order to obtain a new S‐SKS relative arrival‐time tomographic model of the upper mantle below Iberia, Western Morocco, and the Canaries. Similar to previous P wave tomographic results, the S wave model provides evidence for (1) subvertical upper‐mantle low‐velocity structures below the Canaries, Atlas Ranges, and Gibraltar Arc, which are interpreted as mantle upwellings fed by a common lower‐mantle source below the Canaries; and (2) two low‐velocity anomalies below the eastern Rif and Betics that we interpret as the result of the interaction between quasi‐toroidal mantle flow induced by the Gibraltar slab and the mantle upwelling behind it. The analysis of teleseismic P wave and S wave arrival‐time residuals and the conversion of the low‐velocity anomalies to temperature variations suggest that the upwellings in the upper mantle below the Canaries, Atlas Ranges, and Gibraltar Arc system may be solely thermal in nature, with temperature excesses in the range ~100–350 °C. Our results also indicate that local partial melting can be present at lithospheric depths, especially below the Atlas Ranges. The locations of thermal mantle upwellings are in good agreement with those of thinned lithosphere, moderate to high heat‐flow measurements, and recent magmatic activity at the surface

    A common deep source for upper-mantle upwellings below the Ibero-western Maghreb region from teleseismic P-wave travel-time tomography

    Get PDF
    Upper-mantle upwellings are often invoked as the cause of Cenozoic volcanism in the Ibero-western Maghreb region. However, their nature, geometry and origin are unclear. This study takes advantage of dense seismic networks, which cover an area extending from the Pyrenees in the north to the Canaries in the south, to provide a new high-resolution P-wave velocity model of the upper-mantle and topmost lower-mantle structure. Our images show three subvertical upper-mantle upwellings below the Canaries, the Atlas Ranges and the Gibraltar Arc, which appear to be rooted beneath the upper-mantle transition zone (MTZ). Two other mantle upwellings beneath the eastern Rif and eastern Betics surround the Gibraltar subduction zone. We propose a new geodynamic model in which narrow upper-mantle upwellings below the Canaries, the Atlas Ranges and the Gibraltar Arc rise from a laterally-propagating layer of material below the MTZ, which in turn is fed by a common deep source below the Canaries. In the Gibraltar region, the deeply rooted upwelling interacts with the Gibraltar slab. Quasi-toroidal flow driven by slab rollback induces the hot mantle material to flow around the slab, creating the two low-velocity anomalies below the eastern Betics and eastern Rif. Our results suggest that the Central Atlantic plume is a likely source of hot mantle material for upper-mantle upwellings in the Ibero-western Maghreb region

    Particles, air quality, policy and health

    Get PDF
    The diversity of ambient particle size and chemical composition considerably complicates pinpointing the specific causal associations between exposure to particles and adverse human health effects, the contribution of different sources to ambient particles at different locations, and the consequent formulation of policy action to most cost-effectively reduce harm caused by airborne particles. Nevertheless, the coupling of increasingly sophisticated measurements and models of particle composition and epidemiology continue to demonstrate associations between particle components and sources (and at lower concentrations) and a wide range of adverse health outcomes. This article reviews the current approaches to source apportionment of ambient particles and the latest evidence for their health effects, and describes the current metrics, policies and legislation for the protection of public health from ambient particles. A particular focus is placed on particles in the ultrafine fraction. The review concludes with an extended evaluation of emerging challenges and future requirements in methods, metrics and policy for understanding and abating adverse health outcomes from ambient particles

    L'évolution du relief le long des escarpements de faille normale active : observations, modélisations expérimentales et numériques

    No full text
    Relief evolution in active tectonic areas is controlled by the interactions between tectonics and surface processes (erosion, transport and sedimentation). These interactions lead to the formation of geomorphologic markers that remain stable during the equilibrium reached on the long-term between erosion and tectonics. In the context of footwalls of active normal faults, these geomorphologic markers are river-long profiles and triangular facets. Previous numerical models and numerous measurements in the Basin and Range show the existence of a linear or logarithmic relationship between the morphometry (height, slope) of triangular facets and the slip rate V of the normal fault. This relationship suggests the main control of V on the topography of the foot-wall. The aim of this thesis is to better constrain the relationship between V, surface processes and the resulting topography. Observations on natural cases, an experimental and a numerical approach highlight the main control of V on the topographic evolution of the foot-wall. The experimental approach show that V controls erosion rates (incision rate, erosion rate of slopes and regressive erosion rate) and possibly the height of triangular facets. This approach indicates likewise that the parameter K of the stream power law depends on V. The numerical approach corroborates the control of V on erosion rates and on facet height. It also shows that the shape of drainage basins depends on V (slope-area relationship) and it suggests the same for the parameters of the stream power law.Dans les régions à tectonique active, les interactions entre la déformation crustale et les processus de surface (érosion, transport et sédimentation) contrôlent l'évolution du relief. Ces interactions conduisent à la formation de marqueurs géomorphologiques stables lors de l'état d'équilibre atteint sur le long terme entre l'érosion et la tectonique. Dans le contexte des foot-wall de faille normale active, ces marqueurs géomorphologiques sont les profils longitudinaux des lits des rivières et les facettes triangulaires. Des modèles numériques préexistants et de nombreuses mesures dans le Basin and Range montrent l'existence d'une relation linéaire ou logarithmique entre la morphométrie (hauteur, pente) des facettes triangulaires et la vitesse de glissement de la faille normale V. Cette relation suggère le contrôle majeur de V sur la topographie du foot-wall. Le but de ce travail de thèse est de mieux contraindre la relation entre V, les processus de surfaces et la topographie résultante. Des observations de cas naturels, une approche expérimentale et une approche numérique ont permis de mettre en évidence le contrôle majeur de V sur l'évolution topographique du footwall. Les modélisations expérimentales montrent que V contrôle les vitesses d'érosion (taux d'incision, taux d'érosion des versants et taux d'érosion régressive) et éventuellement la hauteur des facettes triangulaires. Elles nous indiquent aussi que le paramètre K de la loi de puissance du courant dépend de V. Les modélisations numériques confirment le contrôle de V sur les vitesses d'érosion et la morphométrie des facettes triangulaires. Elles montrent aussi que la forme des bassins versants dépend de V (relation pente-aire drainée) et suggèrent que les paramètres de la loi de puissance du courant aussi

    A subduction and mantle plume origin for Samoan volcanism

    No full text
    The origin of Samoan volcanism in the southwest Pacific remains enigmatic. Whether mantle melting is solely caused by a mantle plume is questionable because some volcanism, here referred to as non-hotspot volcanism, defies the plume model and its linear age-progression trend. Indeed, non-hotspot volcanism occurred as far as 740 km west of the predicted Samoan hotspot after 5 Ma. Here we use fully-dynamic laboratory subduction models and a tectonic reconstruction to show that the nearby Tonga-Kermadec-Hikurangi (TKH) subduction zone induces a broad mantle upwelling around the northern slab edge that coincides with the non-hotspot volcanic activity after 5 Ma. Using published potential mantle temperatures for the ambient mantle and Samoan mantle plume, we find that two geodynamic processes can explain mantle melting responsible for intraplate volcanism in the Samoan region. We propose that before 5 Ma, the volcanism is consistent with the plume model, whereas afterwards non-hotspot volcanism resulted from interaction between the Subduction-Induced Mantle Upwelling (SIMU) and Samoan mantle plume material that propagated west from the hotspot due to the toroidal component of slab rollback-induced mantle flow. In this geodynamic scenario, the SIMU drives decompression melting in the westward-swept plume material, thus producing the non-hotpot volcanism

    Evolution of 3-D subduction-induced mantle flow around lateral slab edges in analogue models of free subduction analysed by stereoscopic particle image velocimetry technique

    No full text
    We present analogue models of free subduction in which we investigate the three-dimensional (3-D) subduction-induced mantle flow focusing around the slab edges. We use a stereoscopic Particle Image Velocimetry (sPIV) technique to map the 3-D mantle flow on 4 vertical cross-sections for one experiment and on 3 horizontal depth-sections for another experiment. On each section the in-plane components are mapped as well as the out-of-plane component for several experimental times. The results indicate that four types of maximum upwelling are produced by the subduction-induced mantle flow. The first two are associated with the poloidal circulation occurring in the mantle wedge and in the sub-slab domain. A third type is produced by horizontal motion and deformation of the frontal part of the slab lying on the 660 km discontinuity. The fourth type results from quasi-toroidal return flow around the lateral slab edges, which produces a maximum upwelling located slightly laterally away from the sub-slab domain and can have another maximum upwelling located laterally away from the mantle wedge. These upwellings occur during the whole subduction process. In contrast, the poloidal circulation in the mantle wedge produces a zone of upwelling that is vigorous during the free falling phase of the slab sinking but that decreases in intensity when reaching the steady-state phase. The position of the maximum upward component and horizontal components of the mantle flow velocity field has been tracked through time. Their time-evolving magnitude is well correlated to the trench retreat rate. The maximum upwelling velocity located laterally away from the subducting plate is ~18-24% of the trench retreat rate during the steady-state subduction phase. It is observed in the mid upper mantle but upwellings are produced throughout the whole upper mantle thickness, potentially promoting decompression melting. It could thereby provide a source for intraplate volcanism, such as Mount Etna in the Mediterranean, the Chiveluch group of volcanoes in Kamchatka and the Samoan hotspot near Tonga

    Sustained indentation in 2-D models of continental collision involving whole mantle subduction

    No full text
    Continental collision zones form at convergent plate boundaries after the negatively buoyant oceanic lithosphere subducts entirely into the Earth’s mantle. Consequently, orogenesis commences, and the colliding continents are sutured together. During the collision, plate convergence and motion of the sutured boundary towards the overriding plate are manifest in its deformation, as is the case for the long-term (∼50 Ma) and nearly constant convergence rate at the India–Eurasia collisional zone that hosts the Himalaya. However, despite the long history of modelling subduction-collision systems, it remains unclear what drives this convergence, especially in models where subduction is driven solely by buoyancy forces. This paper presents dynamic self-consistent buoyancy-driven 2-D whole-mantle scale numerical models of subduction-and-collision processes to explore variations in density and rheological stratification of the colliding continent and overriding plate (OP) viscosity (a proxy for OP strength) that facilitate post-collisional convergence and collisional boundary migration. In models with a moderately buoyant indenting continent, the collisional boundary advance is comparatively low (0.1–0.6 cm yr–1), and convergence is driven by the dense continental lithospheric mantle that continues to subduct as it decouples from its deforming crust. Conversely, models with a highly buoyant indenting continent show sustained indentation at 0.5–1.5 cm yr–1 until the slab detaches. Furthermore, models with a weaker OP and lower backarc viscosity show an enhanced propensity for indentation by a positively buoyant continent. These models additionally highlight the role of whole mantle flow induced by the sinking of the detached slab in the lower mantle as it sustains slow convergence at an average rate of 0.36 cm yr–1 for ∼25 Myr after break-off as well as prevents the residual slab from educting. In previous buoyancy-driven partial mantle depth models such eduction does generally occur, given that free-sinking of the detached slab in the mantle is not modelled. Although these findings widen the understanding of the long-term convergence of indenting continents, the lower post-collisional advance rates (0.3–1.5 cm yr–1) compared to India’s approximate 1000–2000 km of northward indentation during the last 50 Myr attest to the need for 3-D models

    Interaction between normal fault slip and erosion on relief evolution: Insights from experimental modelling

    Get PDF
    International audienceThe growth of relief in active tectonic areas is mainly controlled by the interactions between tectonics and surface processes (erosion and sedimentation). The study of long-lived morphologic markers formed by these interactions can help in quantifying the competing effects of tectonics, erosion and sedimentation. In regions experiencing active extension, river-long profiles and faceted spurs (triangular facets) can help in un- derstanding the development of mountainous topography along normal fault scarps. In this study, we devel- oped analogue experiments that simulate the morphologic evolution of a mountain range bounded by a normal fault. This paper focuses on the effect of the fault slip rate on the morphologic evolution of the foot- wall by performing three analogue experiments with different fault slip rates under a constant rainfall rate. A morphometric analysis of the modelled catchments allows comparing with a natural case (Tunka half- graben, Siberia). After a certain amount of fault slip, the modelled footwall topographies of our models reaches a dynamic equilibrium (i.e., erosion balances tectonic uplift relative to the base level) close to the fault, whereas the topography farther from the fault is still being dissected due to regressive erosion. We show that the rates of vertical erosion in the area where dynamic equilibrium is reached and the rate of re- gressive erosion are linearly correlated with the fault throw rate. Facet morphology seems to depend on the fault slip rate except for the fastest experiment where faceted spurs are degraded due to mass wasting. A stream-power law is computed for the area wherein rivers reach a topographic equilibrium. We show that the erosional capacity of the system depends on the fault slip rate. Finally, our results demonstrate the pos- sibility of preserving convex river-long profiles on the long-term under steady external (tectonic uplift and rainfall) conditions

    Topography of the Overriding Plate During Progressive Subduction: A Dynamic Model to Explain Forearc Subsidence

    No full text
    Overriding plate topography provides constraints on subduction zone geodynamics. We investigate its evolution using fully dynamic laboratory models of subduction with techniques of stereoscopic photogrammetry and particle image velocimetry. Model results show that the topography is characterized by an area of forearc dynamic subsidence, with a magnitude scaling to 1.44–3.97 km in nature, and a local topographic high between the forearc subsided region and the trench. These topographic features rapidly develop during the slab free‐sinking phase and gradually decrease during the steady state slab rollback phase. We propose that they result from the variation of the vertical component of the trench suction force along the subduction zone interface, which gradually increases with depth and results from the gradual slab steepening during the initial transient slab sinking phase. The downward mantle flow in the nose of the mantle wedge plays a minor role in driving forearc subsidence
    corecore