588 research outputs found

    Neural Embeddings for Web Testing

    Full text link
    Web test automation techniques employ web crawlers to automatically produce a web app model that is used for test generation. Existing crawlers rely on app-specific, threshold-based, algorithms to assess state equivalence. Such algorithms are hard to tune in the general case and cannot accurately identify and remove near-duplicate web pages from crawl models. Failing to retrieve an accurate web app model results in automated test generation solutions that produce redundant test cases and inadequate test suites that do not cover the web app functionalities adequately. In this paper, we propose WEBEMBED, a novel abstraction function based on neural network embeddings and threshold-free classifiers that can be used to produce accurate web app models during model-based test generation. Our evaluation on nine web apps shows that WEBEMBED outperforms state-of-the-art techniques by detecting near-duplicates more accurately, inferring better web app models that exhibit 22% more precision, and 24% more recall on average. Consequently, the test suites generated from these models achieve higher code coverage, with improvements ranging from 2% to 59% on an app-wise basis and averaging at 23%.Comment: 12 pages; in revisio

    Atomic Force Microscopy Application for the Measurement of Infliximab Concentration in Healthy Donors and Pediatric Patients with Inflammatory Bowel Disease

    Get PDF
    The use of infliximab has completely changed the therapeutic landscape in inflammatory bowel disease. However, despite its proven efficacy to induce and maintain clinical remission, increasing evidence suggests that treatment failure may be associated with inadequate drug blood concentrations. The introduction of biosensors based on different nanostructured materials for the rapid quantification of drugs has been proposed for therapeutic drug monitoring. This study aimed to apply atomic force microscopy (AFM)-based nanoassay for the measurement of infliximab concentration in serum samples of healthy donors and pediatric IBD patients. This assay measured the height signal variation of a nanostructured gold surface covered with a self-assembled monolayer of alkanethiols. Inside this monolayer, we embedded the DNA conjugated with a tumor necrosis factor able to recognize the drug. The system was initially fine-tuned by testing known infliximab concentrations (0, 20, 30, 40, and 50 nM) in buffer and then spiking the same concentrations of influximab into the sera of healthy donors, followed by testing pediatric IBD patients. A good correlation between height variation and drug concentration was found in the buffer in both healthy donors and pediatric IBD patients (p-value < 0.05), demonstrating the promising use of AFM nanoassay in TDM

    Cheesemaking in highland pastures: Milk technological properties, cream, cheese and ricotta yields, milk nutrients recovery, and products composition

    Get PDF
    Summer transhumance of dairy cows to high Alpine pastures is still practiced in many mountainous areas. It is important for many permanent dairy farms because the use of highland pastures increases milk production and high-priced typical local dairy products often boost farm income. As traditional cheese- and ricotta-making procedures in Alpine pastures are central to this dairy system, the objective of this study was to characterize the quality and efficiency of products and their relationships with the quality and availability of grass during the grazing season. The milk from 148 cows from 12 permanent farms reared on a temporary farm located in Alpine pastures was processed every 2 wk during the summer (7 cheesemakings from late June to early September). During each processing, 11 dairy products (4 types of milk, 2 by-products, 3 fresh products, and 2 ripened cheeses) were sampled and analyzed. In addition, 8 samples of fresh forage from the pasture used by the cows were collected and analyzed. At the beginning of the pasture season the cows were at 233 \ub1 90 d in milk, 2.4 \ub1 1.7 parities, and produced 23.6 \ub1 5.7 kg/d of milk. The milk yield decreased with the move from permanent to temporary farms and during the entire summer transhumance, but partly recovered after the cows returned to the permanent farms. Similar trends were observed for the daily yields of fat, protein, casein, lactose, and energy, as we found no large variations in the quality of the milk, with the exception of the first period of Alpine pasture. The somatic cell counts of milk increased during transhumance, but this resulted from a concentration of cells in a lower quantity of milk rather than an increase in the total number of cells ejected daily from the udder. We noted a quadratic trend in availability of forage (fresh and dry matter weight per hectare), with a maximum in late July. The quality of forage also varied during the summer with a worsening of chemical composition. The evening milk (before and after natural creaming), the whole morning milk, and the mixed vat milk had different chemical compositions, traditional coagulation properties, and curd-firming modeling parameters. These variations over the pasture season were similar to the residual variations with respect to chemical composition, and much lower with respect to coagulation and curd-firming traits. Much larger variations were noted in cream, cheese, and ricotta yields, as well as in nutrient recoveries in curd during the pasture season. The protein content of forage was correlated with some of the coagulation and curd-firming traits, the ether extract of forage was positively correlated with milk fat content and cheese yields, and fiber fractions of forage were unfavorably correlated with some of the chemical and technological traits. Traditional cheese- and ricotta-making procedures showed average cream, cheese, and ricotta yields of 6.3, 14.2, and 4.9%, respectively, and an overall recovery of almost 100% of milk fat, 88% of milk protein, and 60% of total milk solids

    Associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits in dairy cows

    Get PDF
    The aim of this study was to investigate associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits. Forty-one multibreed herds were selected for the study, and composite milk samples were collected from 1,508 cows belonging to 3 specialized dairy breeds (Holstein Friesian, Brown Swiss, and Jersey) and 3 dual-purpose breeds of Alpine origin (Simmental, Rendena, and Grey Alpine). Milk composition [i.e., fat, protein, casein, lactose, pH, urea, and somatic cell count (SCC)] was analyzed, and separation of protein fractions was performed by reversed-phase high performance liquid chromatography. Eleven coagulation traits were measured: 5 traditional milk coagulation properties [time from rennet addition to milk gelation (RCT, min), curd-firming rate as the time to a curd firmness (CF) of 20 mm (k20, min), and CF at 30, 45, and 60 min from rennet addition (a30, a45, and a60, mm)], and 6 new curd firming and syneresis traits [potential asymptotical CF at an infinite time (CFP, mm), curd-firming instant rate constant (kCF, % 7 min-1), curd syneresis instant rate constant (kSR, % 7 min-1), modeled RCT (RCTeq, min), maximum CF value (CFmax, mm), and time at CFmax (tmax, min)]. We also measured 3 cheese yield traits, expressing the weights of total fresh curd (%CYCURD), dry matter (%CYSOLIDS), and water (%CYWATER) in the curd as percentages of the weight of the processed milk, and 4 nutrient recovery traits (RECPROTEIN, RECFAT, RECSOLIDS, and RECENERGY), representing the percentage ratio between each nutrient in the curd and milk. Milk samples with SCC > 100,000 cells/mL were subjected to bacteriological examination. All samples were divided into 7 clusters of udder health (UH) status: healthy (cows with milk SCC < 100,000 cells/mL and uncultured); culture-negative samples with low, medium, or high SCC; and culture-positive samples divided into contagious, environmental, and opportunistic intramammary infection (IMI). Data were analyzed using a linear mixed model. Significant variations in the casein to protein ratio and lactose content were observed in all culture-positive samples and in culture-negative samples with medium to high SCC compared to normal milk. No differences were observed among contagious, environmental, and opportunistic pathogens, suggesting an effect of inflammation rather than infection. The greatest impairment in milk quantity and composition, clotting ability, and cheese production was observed in the 2 UH status groups with the highest milk SCC (i.e., contagious IMI and culture-negative samples with high SCC), revealing a discrepancy between the bacteriological results and inflammatory status, and thus confirming the importance of SCC as an indicator of udder health and milk quality

    PACSIN2 as a modulator of autophagy and mercaptopurine cytotoxicity: mechanisms in lymphoid and intestinal cells

    Get PDF
    PACSIN2 variants are associated with gastrointestinal effects of thiopurines and thiopurine methyltransferase activity through an uncharacterized mechanism that is postulated to involve auto-phagy. This study aims to clarify the role of PACSIN2 in autophagy and in thiopurine cytotoxicity in leukemic and intestinal models. Higher autophagy and lower PACSIN2 levels were observed in inflamed compared with non-inflamed colon biopsies of in-flammatory bowel disease pediatric patients at diagnosis. PAC-SIN2 was identified as an inhibitor of autophagy, putatively through inhibition of autophagosome formation by a protein- protein interaction with LC3-II, mediated by a LIR motif. Moreover, PACSIN2 resulted a modulator of mercaptopurine-induced cyto-toxicity in intestinal cells, suggesting that PACSIN2-regulated autophagy levels might influence thiopurine sensitivity. However, PACSIN2 modulates cellular thiopurine methyltransferase activity via mechanisms distinct from its modulation of autophagy

    Transcriptomic profiling of white blood cells reveals new insights into the molecular mechanisms of thalidomide in children with inflammatory bowel disease

    Get PDF
    Thalidomide has emerged as an effective immunomodulator in the treatment of pediatric patients with inflammatory bowel disease (IBD) refractory to standard therapies. Cereblon, a component of E3 protein ligase complex that mediates ubiquitination and proteasomal degradation of target proteins, has been identified as the primary target of thalidomide. Cereblon plays a crucial role in thalidomide teratogenicity, however it is unclear whether it is also involved in the therapeutic effects in IBD patients. This study aimed at identifying the mechanisms underpinning thalidomide action in pediatric IBD. Ten IBD pediatric patients clinically responsive to thalidomide were prospectively enrolled. RNA-sequencing and functional enrichment analysis was carried out on peripheral blood mononuclear cells obtained before and after treatment with thalidomide. RNA-sequencing analysis revealed 378 differentially expressed genes after treatment with thalidomide. The most deregulated pathways were cytosolic calcium ion concentration, cAMP-mediated signaling, eicosanoid signaling and inhibition of matrix metalloproteinases. Neuronal signaling mechanisms such as CREB signaling in neurons and axonal guidance signaling also emerged. Connectivity Map analysis revealed that thalidomide gene expression changes were similar to those induced by MLN4924, an inhibitor of NEDD8 activating enzyme, suggesting that thalidomide exerts its immunomodulatory effects by acting on the ubiquitin-proteasome pathway. In vitro experiments on cell lines confirmed the effect of thalidomide on altered candidate pathways observed in patients. These results represent a unique resource for enhanced understanding of thalidomide mechanism in patients with IBD, providing novel potential targets associated with drug response.Book of abstract: 4th Belgrade Bioinformatics Conference, June 19-23, 202

    Ischemic wound revascularization by the stromal vascular fraction relies on host-donor hybrid vessels

    Get PDF
    Nonhealing wounds place a significant burden on both quality of life of affected patients and health systems. Skin substitutes are applied to promote the closure of nonhealing wounds, although their efficacy is limited by inadequate vascularization. The stromal vascular fraction (SVF) from the adipose tissue is a promising therapy to overcome this limitation. Despite a few successful clinical trials, its incorporation in the clinical routine has been hampered by their inconsistent results. All these studies concluded by warranting pre-clinical work aimed at both characterizing the cell types composing the SVF and shedding light on their mechanism of action. Here, we established a model of nonhealing wound, in which we applied the SVF in combination with a clinical-grade skin substitute. We purified the SVF cells from transgenic animals to trace their fate after transplantation and observed that it gave rise to a mature vascular network composed of arteries, capillaries, veins, as well as lymphatics, structurally and functionally connected with the host circulation. Then we moved to a human-in-mouse model and confirmed that SVF-derived endothelial cells formed hybrid human-mouse vessels, that were stabilized by perivascular cells. Mechanistically, SVF-derived endothelial cells engrafted and expanded, directly contributing to the formation of new vessels, while a population of fibro-adipogenic progenitors stimulated the expansion of the host vasculature in a paracrine manner. These data have important clinical implications, as they provide a steppingstone toward the reproducible and effective adoption of the SVF as a standard care for nonhealing wounds

    Serological response and breakthrough infection after COVID-19 vaccination in patients with cirrhosis and post-liver transplant

    Get PDF
    BACKGROUND: Vaccine hesitancy and lack of access remain major issues in disseminating COVID-19 vaccination to liver patients globally. Factors predicting poor response to vaccination and risk of breakthrough infection are important data to target booster vaccine programs. The primary aim of the current study was to measure humoral responses to 2 doses of COVID-19 vaccine. Secondary aims included the determination of factors predicting breakthrough infection. METHODS: COVID-19 vaccination and Biomarkers in cirrhosis And post-Liver Transplantation is a prospective, multicenter, observational case-control study. Participants were recruited at 4-10 weeks following first and second vaccine doses in cirrhosis [n = 325; 94% messenger RNA (mRNA) and 6% viral vaccine], autoimmune liver disease (AILD) (n = 120; 77% mRNA and 23% viral vaccine), post-liver transplant (LT) (n = 146; 96% mRNA and 3% viral vaccine), and healthy controls (n = 51; 72% mRNA, 24% viral and 4% heterologous combination). Serological end points were measured, and data regarding breakthrough SARS-CoV-2 infection were collected. RESULTS: After adjusting by age, sex, and time of sample collection, anti-Spike IgG levels were the lowest in post-LT patients compared to cirrhosis (p < 0.0001), AILD (p < 0.0001), and control (p = 0.002). Factors predicting reduced responses included older age, Child-Turcotte-Pugh B/C, and elevated IL-6 in cirrhosis; non-mRNA vaccine in AILD; and coronary artery disease, use of mycophenolate and dysregulated B-call activating factor, and lymphotoxin-α levels in LT. Incident infection occurred in 6.6%, 10.6%, 7.4%, and 15.6% of cirrhosis, AILD, post-LT, and control, respectively. The only independent factor predicting infection in cirrhosis was low albumin level. CONCLUSIONS: LT patients present the lowest response to the SARS-CoV-2 vaccine. In cirrhosis, the reduced response is associated with older age, stage of liver disease and systemic inflammation, and breakthrough infection with low albumin level

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe
    corecore