377 research outputs found

    The trypanosomal transferrin receptor of trypanosoma brucei : a review

    Get PDF
    Iron is an essential element for life. Its uptake and utility requires a careful balancing with its toxic capacity, with mammals evolving a safe and bio-viable means of its transport and storage. This transport and storage is also utilized as part of the iron-sequestration arsenal employed by the mammalian hosts’ ‘nutritional immunity’ against parasites. Interestingly, a key element of iron transport, i.e., serum transferrin (Tf), is an essential growth factor for parasitic haemo-protozoans of the genus Trypanosoma. These are major mammalian parasites causing the diseases human African trypanosomosis (HAT) and animal trypanosomosis (AT). Using components of their well-characterized immune evasion system, bloodstream Trypanosoma brucei parasites adapt and scavenge for the mammalian host serum transferrin within their broad host range. The expression site associated genes (ESAG6 and 7) are utilized to construct a heterodimeric serum Tf binding complex which, within its niche in the flagellar pocket, and coupled to the trypanosomes’ fast endocytic rate, allows receptor-mediated acquisition of essential iron from their environment. This review summarizes current knowledge of the trypanosomal transferrin receptor (TfR), with emphasis on the structure and function of the receptor, both in physiological conditions as well as in conditions where the iron supply to parasites is being limited. Potential applications using current knowledge of the parasite receptor are also briefly discussed, primarily focused on potential therapeutic interventions

    Development of a recombinase polymerase amplification lateral flow assay for the detection of active Trypanosoma evansi infections

    Get PDF
    Author summary Neglected tropical diseases (NTDs) affecting humans and/or domestic animals severely impair the socio-economic development of endemic areas. One of these diseases, animal trypanosomosis, affects livestock and is caused by the parasites of the Trypanosoma genus. The most widespread causative agent of animal trypanosomosis is T. evansi, which is found in large parts of the world (Africa, Asia, South America, Middle East, and the Mediterranean). Proper control and treatment of the disease requires the availability of reliable and sensitive diagnostic tools. DNA-based detection techniques are powerful and versatile in the sense that they can be tailored to achieve a high specificity and usually allow the reliable detection of low amounts of parasite genetic material. However, many DNA-based methodologies (such as PCR) require trained staff and well-equipped laboratories, which is why the research community has actively investigated in developing amplification strategies that are simple, fast, cost-effective and are suitable for use in minimally equipped laboratories and field settings. In this paper, we describe the development of a diagnostic test under a dipstick format for the specific detection of T. evansi, based on a DNA amplification principle (Recombinase Polymerase Amplification aka RPA) that meets the above-mentioned criteria. Background Animal trypanosomosis caused by Trypanosoma evansi is known as "surra" and is a widespread neglected tropical disease affecting wild and domestic animals mainly in South America, the Middle East, North Africa and Asia. An essential necessity for T. evansi infection control is the availability of reliable and sensitive diagnostic tools. While DNA-based PCR detection techniques meet these criteria, most of them require well-trained and experienced users as well as a laboratory environment allowing correct protocol execution. As an alternative, we developed a recombinase polymerase amplification (RPA) test for Type A T. evansi. The technology uses an isothermal nucleic acid amplification approach that is simple, fast, cost-effective and is suitable for use in minimally equipped laboratories and even field settings. Methodology/Principle findings An RPA assay targeting the T. evansi RoTat1.2 VSG gene was designed for the DNA-based detection of T. evansi. Comparing post-amplification visualization by agarose gel electrophoresis and a lateral flow (LF) format reveals that the latter displays a higher sensitivity. The RPA-LF assay is specific for RoTat1.2-expressing strains of T. evansi as it does not detect the genomic DNA of other trypanosomatids. Finally, experimental mouse infection trials demonstrate that the T. evansi specific RPA-LF can be employed as a test-of-cure tool

    A new family of diverse skin peptides from the microhylid frog genus phrynomantis

    Get PDF
    A wide range of frogs produce skin poisons composed of bioactive peptides for defence against pathogens, parasites and predators. While several frog families have been thoroughly screened for skin-secreted peptides, others, like the Microhylidae, have remained mostly unexplored. Previous studies of microhylids found no evidence of peptide secretion, suggesting that this defence adaptation was evolutionarily lost. We conducted transcriptome analyses of the skins of Phrynomantis bifasciatus and Phrynomantis microps, two African microhylid species long suspected to be poisonous. Our analyses reveal 17 evolutionary related transcripts that diversified from to those of cytolytic peptides found in other frog families. The 19 peptides predicted to be processed from these transcripts, named phrynomantins, show a striking structural diversity that is distinct from any previously identified frog skin peptide. Functional analyses of five phrynomantins confirm the loss of a cytolytic function and the absence of insecticidal or proinflammatory activity, suggesting that they represent an evolutionary transition to a new, yet unknown function. Our study shows that peptides have been retained in the defence poison of at least one microhylid lineage and encourages research on similarly understudied taxa to further elucidate the diversity and evolution of skin defence molecules

    Nanobodies as tools to understand, diagnose, and treat African trypanosomiasis

    Get PDF
    African trypanosomes are strictly extracellular protozoan parasites that cause diseases in humans and livestock and significantly affect the economic development of sub-Saharan Africa. Due to an elaborate and efficient (vector)-parasite-host interplay, required to complete their life cycle/transmission, trypanosomes have evolved efficient immune escape mechanisms that manipulate the entire host immune response. So far, not a single field applicable vaccine exists, and chemotherapy is the only strategy available to treat the disease. Current therapies, however, exhibit high drug toxicity and an increased drug resistance is being reported. In addition, diagnosis is often hampered due to the inadequacy of current diagnostic procedures. In the context of tackling the shortcomings of current treatment and diagnostic approaches, nanobodies (Nbs, derived from the heavy chain-only antibodies of camels and llamas) might represent unmet advantages compared to conventional tools. Indeed, the combination of their small size, high stability, high affinity, and specificity for their target and tailorability represents a unique advantage, which is reflected by their broad use in basic and clinical research to date. In this article, we will review and discuss (i) diagnostic and therapeutic applications of Nbs that are being evaluated in the context of African trypanosomiasis, (ii) summarize new strategies that are being developed to optimize their potency for advancing their use, and (iii) document on unexpected properties of Nbs, such as inherent trypanolytic activities, that besides opening new therapeutic avenues, might offer new insight in hidden biological activities of conventional antibodies

    Hepatocyte-derived IL-10 plays a crucial role in attenuating pathogenicity during the chronic phase of T. congolense infection

    Get PDF
    Bovine African Trypanosomosis is an infectious parasitic disease affecting livestock productivity and thereby impairing the economic development of Sub-Saharan Africa. The most important trypanosome species implicated is T. congolense, causing anemia as most important pathological feature. Using murine models, it was shown that due to the parasite's efficient immune evasion mechanisms, including (i) antigenic variation of the variable surface glycoprotein (VSG) coat, (ii) induction of polyclonal B cell activation, (iii) loss of B cell memory and (iv) T cell mediated immunosuppression, disease prevention through vaccination has so far been impossible. In trypanotolerant models a strong, early pro-inflammatory immune response involving IFN-gamma, TNF and NO, combined with a strong humoral anti-VSG response, ensures early parasitemia control. This potent protective inflammatory response is counterbalanced by the production of the anti-inflammatory cytokine IL-10, which in turn prevents early death of the host from uncontrolled hyper-inflammation-mediated immunopathologies. Though at this stage different hematopoietic cells, such as NK cells, T cells and B cells as well as myeloid cells (i.e. alternatively activated myeloid cells (M2) or Ly6c(-) monocytes), were found to produce IL-10, the contribution of non-hematopoietic cells as potential IL-10 source during experimental T. congolense infection has not been addressed. Here, we report for the first time that during the chronic stage of T. congolense infection non-hematopoietic cells constitute an important source of IL-10. Our data shows that hepatocyte-derived IL-10 is mandatory for host survival and is crucial for the control of trypanosomosis-induced inflammation and associated immunopathologies such as anemia, hepatosplenomegaly and excessive tissue injury. Author summary Bovine African Trypanosomosis is a parasitic disease of veterinary importance that adversely affects the public health and economic development of sub-Saharan Africa. The most important trypanosome species implicated is T. congolense, causing anemia as most important pathological feature and major cause of death. Using murine models, it was shown that the disease is characterized by a well-timed and balanced production of pro-inflammatory cytokine promoting factors followed by an anti-inflammatory response, involving IL-10. The latter is required to attenuate infection-associated pathogenicity and to prevent early host death from uncontrolled hyper-inflammation mediated immunopathologies. However, the cellular source of IL-10 in vivo and the window within which these cells exert their function during the course of African trypanosomiasis remain poorly understood, which hampers the design of effective therapeutic strategies. Using a T. congolense infection mouse model, relevant for bovine trypanosomosis, we demonstrate that during the chronic stage of infection hepatocyte-derived IL-10, but not myeloid cell-derived IL-10, regulates the main infection-associated immunopathologies and ultimately mediates host survival. Hence, strategies that tilt the balance of hepatocyte cytokine production in favor of IL-10 could majorly impact the wellbeing and survival of T. congolense-infected animals. Given the unmet medical need for this parasite infection, our findings offer promise for improved treatment protocols in the field

    African Trypanosomes undermine humoral responses and vaccine development : link with inflammatory responses?

    Get PDF
    African trypanosomosis is a debilitating disease of great medical and socioeconomical importance. It is caused by strictly extracellular protozoan parasites capable of infecting all vertebrate classes including human, livestock, and game animals. To survive within their mammalian host, trypanosomes have evolved efficient immune escape mechanisms and manipulate the entire host immune response, including the humoral response. This report provides an overview of how trypanosomes initially trigger and subsequently undermine the development of an effective host antibody response. Indeed, results available to date obtained in both natural and experimental infection models show that trypanosomes impair homeostatic B-cell lymphopoiesis, B-cell maturation and survival and B-cell memory development. Data on B-cell dysfunctioning in correlation with parasite virulence and trypanosome-mediated inflammation will be discussed, as well as the impact of trypanosomosis on heterologous vaccine efficacy and diagnosis. Therefore, new strategies aiming at enhancing vaccination efficacy could benefit from a combination of (i) early parasite diagnosis, (ii) anti-trypanosome (drugs) treatment, and (iii) anti-inflammatory treatment that collectively might allow B-cell recovery and improve vaccination

    African Trypanosomiasis-associated anemia : the contribution of the interplay between parasites and the mononuclear phagocyte system

    Get PDF
    African trypanosomosis (AT) is a chronically debilitating parasitic disease of medical and economic importance for the development of sub-Saharan Africa. The trypanosomes that cause this disease are extracellular protozoan parasites that have developed efficient immune escape mechanisms to manipulate the entire host immune response to allow parasite survival and transmission. During the early stage of infection, a profound pro-inflammatory type 1 activation of the mononuclear phagocyte system (MPS), involving classically activated macrophages (i.e., M1), is required for initial parasite control. Yet, the persistence of this M1-type MPS activation in trypanosusceptible animals causes immunopathology with anemia as the most prominent pathological feature. By contrast, in trypanotolerant animals, there is an induction of IL-10 that promotes the induction of alternatively activated macrophages (M2) and collectively dampens tissue damage. A comparative gene expression analysis between M1 and M2 cells identified galectin-3 (Gal-3) and macrophage migration inhibitory factor (MIF) as novel M1-promoting factors, possibly acting synergistically and in concert with TNF-alpha during anemia development. While Gal-3 enhances erythrophagocytosis, MIF promotes both myeloid cell recruitment and iron retention within the MPS, thereby depriving iron for erythropoiesis. Hence, the enhanced erythrophagocytosis and suppressed erythropoiesis lead to anemia. Moreover, a thorough investigation using MIF-deficient mice revealed that the underlying mechanisms in AT-associated anemia development in trypanosusceptible and tolerant animals are quite distinct. In trypanosusceptible animals, anemia resembles anemia of inflammation, while in trypanotolerant animals' hemodilution, mainly caused by hepatosplenomegaly, is an additional factor contributing to anemia. In this review, we give an overview of how trypanosome-and host-derived factors can contribute to trypanosomosis-associated anemia development with a focus on the MPS system. Finally, we will discuss potential intervention strategies to alleviate AT-associated anemia that might also have therapeutic potential

    MIF contributes to Trypanosoma brucei associated immunopathogenicity development

    Get PDF
    African trypanosomiasis is a chronic debilitating disease affecting the health and economic well-being of many people in developing countries. The pathogenicity associated with this disease involves a persistent inflammatory response, whereby M1-type myeloid cells, including Ly6C(high) inflammatory monocytes, are centrally implicated. A comparative gene analysis between trypanosusceptible and trypanotolerant animals identified MIF (macrophage migrating inhibitory factor) as an important pathogenic candidate molecule. Using MIF-deficient mice and anti-MIF antibody treated mice, we show that MIF mediates the pathogenic inflammatory immune response and increases the recruitment of inflammatory monocytes and neutrophils to contribute to liver injury in Trypanosoma brucei infected mice. Moreover, neutrophil-derived MIF contributed more significantly than monocyte-derived MIF to increased pathogenic liver TNF production and liver injury during trypanosome infection. MIF deficient animals also featured limited anemia, coinciding with increased iron bio-availability, improved erythropoiesis and reduced RBC clearance during the chronic phase of infection. Our data suggest that MIF promotes the most prominent pathological features of experimental trypanosome infections (i.e. anemia and liver injury), and prompt considering MIF as a novel target for treatment of trypanosomiasis-associated immunopathogenicity
    • …
    corecore