107 research outputs found

    Resilience, science, technology, engineering, and mathematics (STEM), and anger: A linguistic inquiry into the psychological processes associated with resilience in secondary school STEM learning.

    Get PDF
    AIM: To examine resilience in Science, Technology, Engineering, and Mathematics (STEM) learning within an ecological model, identifying the psychological processes associated with resilient, and non-resilient learning to develop a framework for promoting STEM resilience. SAMPLE AND METHOD: From a sample of secondary-school students (n = 4,936), 1,577 students who found their STEM lesson difficult were identified. Students were assessed on three resilience capabilities and asked to write a commentary on how they responded to the lesson. RESULTS: Factor analysis revealed that resilience in STEM learning could be positioned within the ecological systems model, with students' resilience being comprised of three capabilities; the ability to quickly and easily recover (Recovery), remain focussed on goals (Ecological), and naturally adjust (Adaptive capacity). Using a linguistic analysis programme, we identified the prevalence of words within the student commentaries which related to seven psychological processes. Greater ability to recover was negatively related to negative emotional processes. To increase the specificity of this relationship, we identified high and low resilient students and compared their commentaries. Low resilient students used significantly more anger words. Qualitative analysis revealed interpersonal sources of anger (anger at teacher due to lack of support) and intrapersonal sources of anger (including rumination, expression and control, and seeking distraction). CONCLUSIONS: Anger is a key process that distinguishes students who struggle to recover from a difficult STEM lesson. An ecological systems model may prove useful for understanding STEM resilience and developing intervention pathways. Implications for teacher education include the importance of students' perceptions of teacher support

    Resilience, science, technology, engineering, and mathematics (STEM), and anger: A linguistic inquiry into the psychological processes associated with resilience in secondary school STEM learning

    Get PDF
    Aim: To examine resilience in Science, Technology, Engineering, and Mathematics (STEM) learning within an ecological model, identifying the psychological processes associated with resilient, and non-resilient learning to develop a framework for promoting STEM resilience. Sample and method: From a sample of secondary-school students (n = 4,936), 1,577 students who found their STEM lesson difficult were identified. Students were assessed on three resilience capabilities and asked to write a commentary on how they responded to the lesson. Results: Factor analysis revealed that resilience in STEM learning could be positioned within the ecological systems model, with students’ resilience being comprised of three capabilities; the ability to quickly and easily recover (Recovery), remain focussed on goals (Ecological), and naturally adjust (Adaptive capacity). Using a linguistic analysis programme, we identified the prevalence of words within the student commentaries which related to seven psychological processes. Greater ability to recover was negatively related to negative emotional processes. To increase the specificity of this relationship, we identified high and low resilient students and compared their commentaries. Low resilient students used significantly more anger words. Qualitative analysis revealed interpersonal sources of anger (anger at teacher due to lack of support) and intrapersonal sources of anger (including rumination, expression and control, and seeking distraction). Conclusions: Anger is a key process that distinguishes students who struggle to recover from a difficult STEM lesson. An ecological systems model may prove useful for understanding STEM resilience and developing intervention pathways. Implications for teacher education include the importance of students’ perceptions of teacher support

    OMEGA – OSIRIS Mapping of Emission-line Galaxies in A901/2: II. Environmental influence on integrated star formation properties and AGN activity

    Get PDF
    We present a study of the star formation and AGN activity for galaxies in CP 15051 the Abell 901/2 multicluster system at z ∼ 0.167 as part of the OSIRIS Mapping of Emission-line Galaxies in A901/2 (OMEGA) survey. Using Tuneable Filter data obtained with the OSIRIS instrument at the Gran Telescopio Canarias, we produce spectra covering the Hα and [NII] spectral lines for more than 400 galaxies. Using optical emission-line diagnostics, we identify a significant number of galaxies hosting AGN, which tend to have high masses and a broad range of morphologies. Moreover, within the environmental densities probed by our study, we find no environmental dependence on the fraction of galaxies hosting AGN. The analysis of the integrated Hα emission shows that the specific star formation rates of a majority of the cluster galaxies are below the field values for a given stellar mass. We interpret this result as evidence for a slow decrease in the star formation activity of star-forming galaxies as they fall into higher density regions, contrary to some previous studies that suggested a rapid truncation of star formation. We find that most of the intermediate- and high-mass spiral galaxies go through a phase in which their star formation is suppressed but still retain significant star formation activity. During this phase, these galaxies tend to retain their spiral morphology while their colours become redder. The presence of this type of galaxies in high-density regions indicates that the physical mechanism responsible for suppressing star formation affects mainly the gas component of the galaxies, suggesting that ram-pressure stripping or starvation is potentially responsible

    Direct comparison of virtual reality and 2D delivery on sense of presence, emotional and physiological outcome measures

    Get PDF
    Introduction: Virtual-reality (VR) technology has, over the last decade, quickly expanded from gaming into other sectors including training, education, and wellness. One of the most popular justifications for the use of VR over 2D is increased immersion and engagement. However, very little fundamental research has been produced evaluating the comparative impact of immersive VR on the user’s cognitive, physiological, and emotional state.Methods: A within-subject cross-over study design was used to directly compare VR and 2D screen delivery of different subject matter content. Both physiological and self-report data were collected for scenes containing calming nature environments, aggressive social confrontations, and neutral content.Results: Compared to 2D, the VR delivery resulted in a higher sense of presence, higher ratings of engagement, fun, and privacy. Confrontational scenes were rated as more tense whilst calming scenes were rated as more relaxing when presented in VR compared to 2D. Physiological data indicated that the scenes promoted overall states of arousal and relaxation in accordance with the scene subject matter (both VR and 2D). However, heart rate (HR) and galvanic skin response (GSR) were consistently higher throughout the VR delivery condition compared to 2D, including responses during scenes of neutral and calming subject matter.Discussion: This discrepancy between emotional and physiological responses for calming and neutral content in VR suggest an elevated arousal response driven by VR immersion that is independent of the emotional and physiological responses to the subject matter itself. These findings have important implications for those looking to develop and utilize VR technology as a training and educational tool as they provide insights into the impact of immersion on the user

    Variability in the Dynamics of Mortality and Immobility Responses of Freshwater Arthropods Exposed to Chlorpyrifos

    Get PDF
    The species sensitivity distribution (SSD) concept is an important probabilistic tool for environmental risk assessment (ERA) and accounts for differences in species sensitivity to different chemicals. The SSD model assumes that the sensitivity of the species included is randomly distributed. If this assumption is violated, indicator values, such as the 50% hazardous concentration, can potentially change dramatically. Fundamental research, however, has discovered and described specific mechanisms and factors influencing toxicity and sensitivity for several model species and chemical combinations. Further knowledge on how these mechanisms and factors relate to toxicologic standard end points would be beneficial for ERA. For instance, little is known about how the processes of toxicity relate to the dynamics of standard toxicity end points and how these may vary across species. In this article, we discuss the relevance of immobilization and mortality as end points for effects of the organophosphate insecticide chlorpyrifos on 14 freshwater arthropods in the context of ERA. For this, we compared the differences in response dynamics during 96 h of exposure with the two end points across species using dose response models and SSDs. The investigated freshwater arthropods vary less in their immobility than in their mortality response. However, differences in observed immobility and mortality were surprisingly large for some species even after 96 h of exposure. As expected immobility was consistently the more sensitive end point and less variable across the tested species and may therefore be considered as the relevant end point for population of SSDs and ERA, although an immobile animal may still potentially recover. This is even more relevant because an immobile animal is unlikely to survive for long periods under field conditions. This and other such considerations relevant to the decision-making process for a particular end point are discussed

    OMEGA - OSIRIS Mapping of Emission-line Galaxies in A901/2 - II. Environmental influence on integrated star formation properties and AGN activity

    Get PDF
    We present a study of the star formation and AGN activity for galaxies in CP 15051 the Abell 901/2 multicluster system at z ∼ 0.167 as part of the OSIRIS Mapping of Emission-line Galaxies in A901/2 (OMEGA) survey. Using Tuneable Filter data obtained with the OSIRIS instrument at the Gran Telescopio Canarias, we produce spectra covering the Hα and [N II] spectral lines for more than 400 galaxies. Using optical emission-line diagnostics, we identify a significant number of galaxies hosting AGN, which tend to have high masses and a broad range of morphologies.Moreover, within the environmental densities probed by our study, we find no environmental dependence on the fraction of galaxies hosting AGN. The analysis of the integrated Hα emission shows that the specific star formation rates of a majority of the cluster galaxies are below the field values for a given stellar mass.We interpret this result as evidence for a slow decrease in the star formation activity of star-forming galaxies as they fall into higher density regions, contrary to some previous studies that suggested a rapid truncation of star formation.We find that most of the intermediate- and high-mass spiral galaxies go through a phase in which their star formation is suppressed but still retain significant star formation activity. During this phase, these galaxies tend to retain their spiral morphology while their colours become redder. The presence of this type of galaxies in high-density regions indicates that the physical mechanism responsible for suppressing star formation affects mainly the gas component of the galaxies, suggesting that ram-pressure stripping or starvation is potentially responsible.We acknowledge financial support from STFC. This work has made use of The University of Nottingham HPC facility, ‘Minerva’. BRP acknowledges financial support from the Spanish Ministry of Economy and Competitiveness through the Plan Nacional de Astronom´ıa y Astrof´ısica grant AYA2012-032295. ACS acknowledges funding from a CNPq, BJT-A fellowship (400857/2014-6). SPB and MEG gratefully acknowledge the receipt of an STFC Advanced Fellowship. AB is funded by the Austrian Science Foundation FWF (grant P23946-N16)

    Conducting robust ecological analyses with climate data

    Get PDF
    Although the number of studies discerning the impact of climate change on ecological systems continues to increase, there has been relatively little sharing of the lessons learnt when accumulating this evidence. At a recent workshop entitled ‘Using climate data in ecological research’ held at the UK Met Office, ecologists and climate scientists came together to discuss the robust analysis of climate data in ecology. The discussions identified three common pitfalls encountered by ecologists: 1) selection of inappropriate spatial resolutions for analysis; 2) improper use of publically available data or code; and 3) insufficient representation of the uncertainties behind the adopted approach. Here, we discuss how these pitfalls can be avoided, before suggesting ways that both ecology and climate science can move forward. Our main recommendation is that ecologists and climate scientists collaborate more closely, on grant proposals and scientific publications, and informally through online media and workshops. More sharing of data and code (e.g. via online repositories), lessons and guidance would help to reconcile differing approaches to the robust handling of data. We call on ecologists to think critically about which aspects of the climate are relevant to their study system, and to acknowledge and actively explore uncertainty in all types of climate data. And we call on climate scientists to make simple estimates of uncertainty available to the wider research community. Through steps such as these, we will improve our ability to robustly attribute observed ecological changes to climate or other factors, while providing the sort of influential, comprehensive analyses that efforts to mitigate and adapt to climate change so urgently require

    OMEGA - OSIRIS Mapping of Emission-line Galaxies in A901/2: I. Survey description, data analysis, and star formation and AGN activity in the highest density regions

    Get PDF
    We present an overview of and first results from the OMEGA (OSIRIS Mapping of Emission-line Galaxies in the multicluster system A901/2) survey. The ultimate goal of this project is to study star formation and active galactic nucleus (AGN) activity across a broad range of environments at a single redshift. Using the tuneable-filter mode of the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) instrument on Gran Telescopio Canarias, we target Hα and [NII] emission lines over an ∼0.5×0.5 deg2 region containing the z∼0.167 multicluster system A901/2. In this paper, we describe the design of the survey, the observations and the data analysis techniques developed. We then present early results from two OSIRIS pointings centred on the cores of the A901a and A902 clusters. AGN and star-forming (SF) objects are identified using the [NII]/Hα versus WHα diagnostic diagram. The AGN hosts are brighter, more massive, and possess earlier type morphologies than SF galaxies. Both populations tend to be located towards the outskirts of the high-density regions we study. The typical Hα luminosity of these sources is significantly lower than that of field galaxies at similar redshifts, but greater than that found for A1689, a rich cluster at z∼0.2. The Hα luminosities of our objects translate into star formation rates (SFRs) between ∼0.02 and 6 Myr−1. Comparing the relationship between stellar mass and Hα-derived SFR with that found in the field indicates a suppression of star formation in the cores of the clusters. These findings agree with previous investigations of this multicluster structure, based on other star formation indicators, and demonstrate the power of tuneable filters for this kind of study

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist
    corecore