32 research outputs found

    Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo

    Get PDF
    In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study

    The Human Serum Metabolome

    Get PDF
    Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca

    Abstracts from the NIHR INVOLVE Conference 2017

    Get PDF
    n/

    Microduplication and Triplication of 22q11.2: A Highly Variable Syndrome

    Get PDF
    22q11.2 microduplications of a 3-Mb region surrounded by low-copy repeats should be, theoretically, as frequent as the deletions of this region; however, few microduplications have been reported. We show that the phenotype of these patients with microduplications is extremely diverse, ranging from normal to behavioral abnormalities to multiple defects, only some of which are reminiscent of the 22q11.2 deletion syndrome. This diversity will make ascertainment difficult and will necessitate a rapid-screening method. We demonstrate the utility of four different screening methods. Although all the screening techniques give unique information, the efficiency of real-time polymerase chain reaction allowed the discovery of two 22q11.2 microduplications in a series of 275 females who tested negative for fragile X syndrome, thus widening the phenotypic diversity. Ascertainment of the fragile X–negative cohort was twice that of the cohort screened for the 22q11.2 deletion. We also report the first patient with a 22q11.2 triplication and show that this patient's mother carries a 22q11.2 microduplication. We strongly recommend that other family members of patients with 22q11.2 microduplications also be tested, since we found several phenotypically normal parents who were carriers of the chromosomal abnormality
    corecore