2,608 research outputs found
Facet-dependent interactions of islet amyloid polypeptide with gold nanoparticles: implications for fibril formation and peptide-induced lipid membrane disruption
A comprehensive understanding of the mechanisms of interaction between proteins or peptides and nanomaterials is crucial for the development of nanomaterial-based diagnos-tics and therapeutics. In this work, we systematically explored the interactions between citrate-capped gold nanoparticles (AuNPs) and islet amyloid polypeptide (IAPP), a 37-amino acid peptide hormone co-secreted with insulin from the pancreatic islet. We uti-lized diffusion-ordered spectroscopy, isothermal titration calorimetry, localized surface plasmon resonance spectroscopy, gel electrophoresis, atomic force microscopy, transmis-sion electron microscopy (TEM), and molecular dynamics (MD) simulations to systemati-cally elucidate the underlying mechanism of the IAPP−AuNP interactions. Because of the presence of a metal-binding sequence motif in the hydrophilic peptide domain, IAPP strongly interacts with the Au surface in both the monomeric and fibrillar states. Circular dichroism showed that AuNPs triggered the IAPP conformational transition from random coil to ordered structures (α-helix and β-sheet), and TEM imaging suggested the accelera-tion of IAPP fibrillation in the presence of AuNPs. MD simulations revealed that the IAPP−AuNP interactions were initiated by the N-terminal domain (IAPP residues 1−19), which subsequently induced a facet-dependent conformational change in IAPP. On a Au(111) surface, IAPP was unfolded and adsorbed directly onto the Au surface, while for the Au(100) surface, it interacted predominantly with the citrate adlayer and retained some helical conformation. The observed affinity of AuNPs for IAPP was further applied to reduce the level of peptide-induced lipid membrane disruption
Facet-dependent interactions of islet amyloid polypeptide with gold nanoparticles: Implications for fibril formation and peptide-induced lipid membrane disruption
A comprehensive understanding of the mechanisms of interaction between proteins or peptides and nanomaterials is crucial for the development of nanomaterial-based diagnostics and therapeutics. In this work, we systematically explored the interactions between citrate-capped gold nanoparticles (AuNPs) and islet amyloid polypeptide (IAPP), a 37-amino acid peptide hormone co-secreted with insulin from the pancreatic islet. We utilized diffusion-ordered spectroscopy, isothermal titration calorimetry, localized surface plasmon resonance spectroscopy, gel electrophoresis, atomic force microscopy, transmission electron microscopy (TEM), and molecular dynamics (MD) simulations to systematically elucidate the underlying mechanism of the IAPP–AuNP interactions. Because of the presence of a metal-binding sequence motif in the hydrophilic peptide domain, IAPP strongly interacts with the Au surface in both the monomeric and fibrillar states. Circular dichroism showed that AuNPs triggered the IAPP conformational transition from random coil to ordered structures (α-helix and β-sheet), and TEM imaging suggested the acceleration of IAPP fibrillation in the presence of AuNPs. MD simulations revealed that the IAPP–AuNP interactions were initiated by the N-terminal domain (IAPP residues 1–19), which subsequently induced a facet-dependent conformational change in IAPP. On a Au(111) surface, IAPP was unfolded and adsorbed directly onto the Au surface, while for the Au(100) surface, it interacted predominantly with the citrate adlayer and retained some helical conformation. The observed affinity of AuNPs for IAPP was further applied to reduce the level of peptide-induced lipid membrane disruption
A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles
In recent years, there has been a dramatic increase in the use of unmanned
aerial vehicles (UAVs), particularly for small UAVs, due to their affordable
prices, ease of availability, and ease of operability. Existing and future
applications of UAVs include remote surveillance and monitoring, relief
operations, package delivery, and communication backhaul infrastructure.
Additionally, UAVs are envisioned as an important component of 5G wireless
technology and beyond. The unique application scenarios for UAVs necessitate
accurate air-to-ground (AG) propagation channel models for designing and
evaluating UAV communication links for control/non-payload as well as payload
data transmissions. These AG propagation models have not been investigated in
detail when compared to terrestrial propagation models. In this paper, a
comprehensive survey is provided on available AG channel measurement campaigns,
large and small scale fading channel models, their limitations, and future
research directions for UAV communication scenarios
GPU-based ultra fast dose calculation using a finite pencil beam model
Online adaptive radiation therapy (ART) is an attractive concept that
promises the ability to deliver an optimal treatment in response to the
inter-fraction variability in patient anatomy. However, it has yet to be
realized due to technical limitations. Fast dose deposit coefficient
calculation is a critical component of the online planning process that is
required for plan optimization of intensity modulated radiation therapy (IMRT).
Computer graphics processing units (GPUs) are well-suited to provide the
requisite fast performance for the data-parallel nature of dose calculation. In
this work, we develop a dose calculation engine based on a finite-size pencil
beam (FSPB) algorithm and a GPU parallel computing framework. The developed
framework can accommodate any FSPB model. We test our implementation on a case
of a water phantom and a case of a prostate cancer patient with varying beamlet
and voxel sizes. All testing scenarios achieved speedup ranging from 200~400
times when using a NVIDIA Tesla C1060 card in comparison with a 2.27GHz Intel
Xeon CPU. The computational time for calculating dose deposition coefficients
for a 9-field prostate IMRT plan with this new framework is less than 1 second.
This indicates that the GPU-based FSPB algorithm is well-suited for online
re-planning for adaptive radiotherapy.Comment: submitted Physics in Medicine and Biolog
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
A massive hot Jupiter orbiting a metal-rich early-M star discovered in the TESS full frame images
Observations and statistical studies have shown that giant planets are rare
around M dwarfs compared with Sun-like stars. The formation mechanism of these
extreme systems remains under debate for decades. With the help of the TESS
mission and ground based follow-up observations, we report the discovery of
TOI-4201b, the most massive and densest hot Jupiter around an M dwarf known so
far with a radius of and a mass of ,
about 5 times heavier than most other giant planets around M dwarfs. It also
has the highest planet-to-star mass ratio () among such
systems. The host star is an early-M dwarf with a mass of $0.61\pm0.02\
M_{\odot}0.63\pm0.02\ R_{\odot}0.52\pm 0.08$ dex). However, interior
structure modeling suggests that its planet TOI-4201b is metal-poor, which
challenges the classical core-accretion correlation of stellar-planet
metallicity, unless the planet is inflated by additional energy sources.
Building on the detection of this planet, we compare the stellar metallicity
distribution of four planetary groups: hot/warm Jupiters around G/M dwarfs. We
find that hot/warm Jupiters show a similar metallicity dependence around G-type
stars. For M dwarf host stars, the occurrence of hot Jupiters shows a much
stronger correlation with iron abundance, while warm Jupiters display a weaker
preference, indicating possible different formation histories.Comment: 21 pages, 11 figures, 4 tables, submitted to A
ZBED6, a Novel Transcription Factor Derived from a Domesticated DNA Transposon Regulates IGF2 Expression and Muscle Growth
This study identifies a previously uncharacterized protein, encoded by a domesticated DNA transposon, called ZBED6 that regulates the expression of the insulin-like growth factor 2 (IGF2) gene, and possibly numerous others, in all placental mammals including human
Transcriptomic profiles of muscle, heart, and spleen in reaction to circadian heat stress in Ethiopian highland and lowland male chicken
Temperature stress impacts both welfare and productivity of livestock. Global warming is expected to increase the impact, especially in tropical areas. We investigated the biological mechanisms regulated by temperature stress due to the circadian temperature cycle in temperature adapted and non-adapted chicken under tropical conditions. We studied transcriptome profiles of heart, breast muscle, and spleen tissues of Ethiopian lowland chicken adapted to high circadian temperatures and non-adapted Ethiopian highland chicken under lowland conditions at three points during the day: morning, noon, and evening. Functional annotations and network analyses of genes differentially expressed among the time points of the day indicate major differences in the reactions of the tissues to increasing and decreasing temperatures, and also the two chickens lines differ. However, epigenetic changes of chromatin methylation and histone (de)acetylation seemed to be central regulatory mechanisms in all tissues in both chicken lines. Finally, all tissues showed differentially expressed genes between morning and evening times indicating biological mechanisms that need to change during the night to reach morning levels again the next day.</p
Estrogen/progesterone Receptor and HER2 Discordance Between Primary Tumor and Brain Metastases in Breast Cancer and Its Effect on Treatment and Survival
BACKGROUND: Breast cancer treatment is based on estrogen receptors (ERs), progesterone receptors (PRs), and human epidermal growth factor receptor 2 (HER2). At the time of metastasis, receptor status can be discordant from that at initial diagnosis. The purpose of this study was to determine the incidence of discordance and its effect on survival and subsequent treatment in patients with breast cancer brain metastases (BCBM).
METHODS: A retrospective database of 316 patients who underwent craniotomy for BCBM between 2006 and 2017 was created. Discordance was considered present if the ER, PR, or HER2 status differed between the primary tumor and the BCBM.
RESULTS: The overall receptor discordance rate was 132/316 (42%), and the subtype discordance rate was 100/316 (32%). Hormone receptors (HR, either ER or PR) were gained in 40/160 (25%) patients with HR-negative primary tumors. HER2 was gained in 22/173 (13%) patients with HER2-negative primary tumors. Subsequent treatment was not adjusted for most patients who gained receptors-nonetheless, median survival (MS) improved but did not reach statistical significance (HR, 17-28 mo, P = 0.12; HER2, 15-19 mo, P = 0.39). MS for patients who lost receptors was worse (HR, 27-18 mo, P = 0.02; HER2, 30-18 mo, P = 0.08).
CONCLUSIONS: Receptor discordance between primary tumor and BCBM is common, adversely affects survival if receptors are lost, and represents a missed opportunity for use of effective treatments if receptors are gained. Receptor analysis of BCBM is indicated when clinically appropriate. Treatment should be adjusted accordingly.
KEY POINTS: 1. Receptor discordance alters subtype in 32% of BCBM patients.2. The frequency of receptor gain for HR and HER2 was 25% and 13%, respectively.3. If receptors are lost, survival suffers. If receptors are gained, consider targeted treatment
- …