101 research outputs found
Techno-Economic Assessment & Life-Cycle Assessment Guidelines for CO2 Utilization
NOTE: Updated version 1.1 available at http://hdl.handle.net/2027.42/162573
Climate change is one of the largest challenges of our time. One of the major causes of anthropogenic climate change, carbon dioxide, also leads to ocean acidification. Left unaddressed, these two challenges will alter ecosystems and fundamentally change life, as we know it. Under the auspices of the UN Framework Convention on Climate Change and through the Paris Agreement, there is a commitment to keep global temperature increase to well below two degrees Celsius. This will require a variety of strategies including increased renewable power generation and broad scale electrification, increased energy efficiency, and carbon-negative technologies.
We believe that Life Cycle Assessment (LCA) is necessary to prove that a technology could contribute to the mitigation of environmental impacts and that Techno-Economic Assessment (TEA) will show how the technology could be competitively delivered in the market. Together the guidelines for LCA and TEA that are presented in this document are a valuable toolkit for promoting carbon capture and utilization (CCU) technology development.Development of standardized CO2 Life Cycle and Techno-economic Assessment Guidelines was commissioned by CO2 Sciences, Inc., with the support of 3M, EIT Climate-KIC, CO2 Value Europe, Emissions Reduction Alberta, Grantham Foundation for the Protection of the Environment, R. K. Mellon Foundation, Cynthia and George Mitchell Foundation, National Institute of Clean and Low Carbon Energy, Praxair, Inc., XPRIZE and generous individuals who are committed to action to address climate change.https://deepblue.lib.umich.edu/bitstream/2027.42/145436/3/Global_CO2_Initiative_TEA_LCA_Guidelines-2018.pdf-
The effects of entrepreneurship education
Entrepreneurship education ranks high on policy agendas in Europe and the US, but little research is available to assess its impact. To help close this gap we investigate whether entrepreneurship education a?ects intentions to be entrepreneurial uniformly or whether it leads to greater sorting of students. The latter can reduce the average intention to be entrepreneurial and yet be socially beneficial. This paper provides a model of learning in which entrepreneurship education generates signals to students. Drawing on the signals, students evaluate their aptitude for entrepreneurial tasks. The model is tested using data from a compulsory entrepreneurship course. Using ex ante and ex post survey responses from students, we find that intentions to found decline somewhat although the course has significant positive e?ects on students’ self-assessed entrepreneurial skills. The empirical analysis supports the hypothesis that students receive informative signals and learn about their entrepreneurial aptitude. We outline implications for educators and public policy
Platelet activation in the postoperative period after lung transplantation
Objective
During lung transplantation, cells in the pulmonary parenchyma are subjected to ischemia, hypothermic storage, and reperfusion injury. Platelets, whose granular contents include adhesion receptors, chemokines, and coactivating substances that activate inflammatory and coagulant cascades, likely play a critical role in the lung allograft response to ischemia and reperfusion. The platelet response to the pulmonary allograft, however, has never been studied. Here we report significant platelet activation immediately after lung transplantation.
Methods
We performed a prospective cohort study comparing markers of platelet activation in patients undergoing lung transplantation and patients undergoing nontransplant thoracotomy. Plasma levels of soluble P-selectin, soluble CD40 ligand, and platelet–leukocyte conjugates were measured before surgery, after skin closure, and at 6 postoperative hours.
Results
Both soluble P-selectin and soluble CD40 ligand levels increased significantly after lung transplantation but not after thoracotomy. Additionally, platelet–monocyte conjugate fluorescence was significantly higher after lung transplantation than after thoracotomy alone.
Conclusion
These findings suggest that platelet activation is significantly increased after lung transplantation beyond that expected from the postoperative state. The increase in circulating platelet–monocyte conjugates suggests an important interaction between platelets and inflammatory cells. Further research should examine whether platelet activation affects early graft function after lung transplantation
STAT3/LKB1 controls metastatic prostate cancer by regulating mTORC1/CREB pathway
Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa
Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans
CO_2 is both a critical regulator of animal physiology and an important sensory cue for many animals for host detection, food location, and mate finding. The free-living soil nematode Caenorhabditis elegans shows CO_2 avoidance behavior, which requires a pair of ciliated sensory neurons, the BAG neurons. Using in vivo calcium imaging, we show that CO_2 specifically activates the BAG neurons and that the CO_2-sensing function of BAG neurons requires TAX-2/TAX-4 cyclic nucleotide-gated ion channels and the receptor-type guanylate cyclase GCY-9. Our results delineate a molecular pathway for CO_2 sensing and suggest that activation of a receptor-type guanylate cyclase is an evolutionarily conserved mechanism by which animals detect environmental CO_2
Recommended from our members
Insiders, Outsiders, and the Struggle for Consecration in Cultural Fields: A Core-Periphery Perspective
Building on recent research emphasizing how legitimacy depends on consensus among audiences about candidates’ characteristics and activities, we examine the relationship between cultural producers’ (candidates) position in the social structure and the consecration of their creative work by relevant audiences. We argue that the outcome of this process of evaluation in any cultural field, whether in art or science, is a function of (1) candidates’ embeddedness within the field, and (2) the type of audience—that is, peers versus critics—evaluating candidates’ work. Specifically, we hypothesize that peers are more likely to favor candidates who are highly embedded in the field, whereas critics will not show such favoritism. We find support for these hypotheses in the context of the Hollywood motion picture industry
The SysteMHC Atlas project.
Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts
Techno-Economic Assessment & Life Cycle Assessment Guidelines for CO2 Utilization (Version 1.1)
Climate change is one of the greatest challenges of our time. Under the auspices of the UN Framework Convention on Climate Change and through the Paris Agreement, there is a commitment to keep global temperature rise this century to well below two degrees Celsius compared with pre-industrial levels. This will require a variety of strategies, including increased renewable power generation, broad-scale electrification, greater energy efficiency, and carbon-negative technologies.
With increasing support worldwide, innovations in carbon capture and utilization (CCU) technologies are now widely acknowledged to contribute to achieving climate mitigation targets while creating economic opportunities. To assess the environmental impacts and commercial competitiveness of these innovations, Life Cycle Assessment (LCA) and Techno-Economic Assessment (TEA) are needed.
Against this background, guidelines (Version 1.0) on LCA and TEA were published in 2018 as a valuable toolkit for evaluating CCU technology development. Ever since, an open community of practitioners, commissioners, and users of such assessments has been involved in gathering feedback on the initial document. That feedback has informed the improvements incorporated in this updated Version 1.1 of the Guidelines. The revisions take into account recent publications in this evolving field of research; correct minor inconsistencies and errors; and provide better alignment of TEA with LCA. Compared to Version 1.0, some sections have been restructured to be more reader-friendly, and the specific guideline recommendations are renamed ‘provisions.’ Based on the feedback, these provisions have been revised and expanded to be more instructive.Global CO2 Initiative at the University of MichiganEIT Climate-KIChttp://deepblue.lib.umich.edu/bitstream/2027.42/162573/5/TEA&LCA Guidelines for CO2 Utilization v1.1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162573/7/ESI reference scenario data_Corrected.xlsxSEL
Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.
Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP
- …