158 research outputs found
The Galactic dust as a foreground to Cosmic Microwave Background maps
We present results obtained with the PRONAOS balloon-borne experiment on
interstellar dust. In particular, the submillimeter / millimeter spectral index
is found to vary between roughly 1 and 2.5 on small scales (3.5' resolution).
This could have implications for component separation in Cosmic Microwave
Background maps.Comment: 4 pages, 1 figure, proceeding of the Multi-Wavelength Cosmology
conference held in Mykonos, Greece, June 2003, ed. Kluwe
Comparison of interface models to account for surface tension in SPH method
The Smoothed Particle Hydrodynamics method (SPH) is a meshfree Lagrangian simulation methodwidely applied for fluid simulations due to the advantages presented by this method for solvingproblems with free and deformable surfaces. In many scientific and engineering applications, surface tension forces play an important or evendominating role in the dynamics of the system. For instance, the breakage (instability) of a liquid jetor film is strongly affected by the strength of the surface tension at the liquid-air interface.Simulating deforming phase interfaces with strong topological changes is still today a challengingtask. As a promising numerical method, here we use SPH to predict the interface instability at awater-air interface.With SPH, the main challenge in modelling surface tension at a free-surface is the accuratedescription of the interface (normal direction and curvature). When only the liquid phase is modelled(to decrease the computational cost), the standard SPH approximations to calculate the normaldirection and curvature of the interface suffer from a lacking “full support”, i.e. the omitted andtherefore missing gas particles. Various models for such free surface surface tension corrections werepresented, see e.g. among others Sirotkin et al., Ordoubadi et al. or Ehigiamusoe et al. Many of thesemodels follow the classical Continuum Surface Force (CSF) approach (Morris, Adami et al.) andincorporate different corrections/treatments at the surface. The objective of our ongoing study is to investigate the influence of different interface descriptions.We compare different free surface particle detection schemes, normal vector calculations andcurvature estimations for the quality of the resulting surface-tension effect. In this work, we focus ontwo-dimensional problems and consider a static drop and oscillating drops as test cases
New insights on the thermal dust from the far-infrared to the centimeter
We present a compilation of PRONAOS-based results concerning the temperature
dependence of the dust submillimeter spectral index, including data from
Galactic cirrus, star-forming regions, dust associated to a young stellar
object, and a spiral galaxy. We observe large variations of the spectral index
(from 0.8 to 2.4) in a wide range of temperatures (11 to 80 K). These spectral
index variations follow a hyperbolic-shaped function of the temperature, high
spectral indices (1.6-2.4) being observed in cold regions (11-20 K) while low
indices (0.8-1.6) are observed in warm regions (35-80 K). Three distinct
effects may play a role in this temperature dependence: one is that the grain
sizes change in dense environments, another is that the chemical composition of
the grains is not the same in different environments, a third one is that there
is an intrinsic dependence of the dust spectral index on the temperature due to
quantum processes. This last effect is backed up by laboratory measurements and
could be the dominant one.
We also briefly present a joint analysis of WMAP dust data together with
COBE/DIRBE and COBE/FIRAS data.Comment: 4 pages, 2 figures, contribution to the proceedings of the
Cologne-Bonn-Zermatt conference, held in Zermatt, Switzerland, Sept. 2003,
eds: S. Pfalzner, C. Kramer, C. Straubmeier, and A. Heithausen,
Springer-Verla
Submillimeter dust emission of the M17 complex measured with PRONAOS
We map a 50' x 30' area in and around the M17 molecular complex with the
French submillimeter balloon-borne telescope PRONAOS, in order to better
understand the thermal emission of cosmic dust and the structure of the
interstellar medium. The PRONAOS-SPM instrument has an angular resolution of
about 3', corresponding to a size of 2 pc at the distance of this complex, and
a high sensitivity up to 0.8 MJy/sr. The observations are made in four wide
submillimeter bands corresponding to effective wavelengths of 200, 260, 360 and
580 um. Using an improved map-making method for PRONAOS data, we map the M17
complex and faint condensations near the dense warm core. We derive maps of
both the dust temperature and the spectral index, which vary over a wide range,
from about 10 K to 100 K for the temperature and from about 1 to 2.5 for the
spectral index. We show that these parameters are anticorrelated, the cold
areas (10-20 K) having a spectral index around 2, whereas the warm areas have a
spectral index between 1 and 1.5. We discuss possible causes of this effect,
and we propose an explanation involving intrinsic variations of the grain
properties. Indeed, to match the observed spectra with two dust components
having a spectral index equal to 2 leads to very large and unlikely amounts of
cold dust. We also give estimates of the column densities and masses of the
studied clumps. Three cold clumps (14-17 K) could be gravitationally unstable.Comment: 16 pages, 4 figures, accepted June 2002 in Astronomy & Astrophysic
Inverse temperature dependence of the dust submillimeter spectral index
We present a compilation of PRONAOS-based results concerning the temperature
dependence of the dust submillimeter spectral index, including data from
Galactic cirrus, star-forming regions, dust associated to a young stellar
object, and a spiral galaxy. We observe large variations of the spectral index
(from 0.8 to 2.4) in a wide range of temperatures (11 to 80 K). These spectral
index variations follow a hyperbolic-shaped function of the temperature, high
spectral indices (1.6-2.4) being observed in cold regions (11-20 K) while low
indices (0.8-1.6) are observed in warm regions (35-80 K). Three distinct
effects may play a role in this temperature dependence: one is that the grain
sizes change in dense environments, another is that the chemical composition of
the grains is not the same in different environments, a third one is that there
is an intrinsic dependence of the dust spectral index on the temperature due to
quantum processes. This last effect is backed up by laboratory measurements and
could be the dominant one.Comment: 5 pages, 3 figures, Letter accepted April 2003 in A&
Far-infrared dust opacity and visible extinction in the Polaris Flare
We present an extinction map of the Polaris molecular cirrus cloud derived
from star counts and compare it with the Schlegel et al. (1998) extinction map
derived from the far--infrared dust opacity. We find that, within the Polaris
cloud, the Schlegel et al. Av values are a factor 2 to 3 higher than the star
count values. We propose that this discrepancy results from a difference in
between the diffuse atomic medium and the Polaris cloud. We
use the difference in spectral energy distribution, warm for the diffuse atomic
medium, cold for the Polaris cloud, to separate their respective contribution
to the line of sight integrated infrared emission and find that the
of cold dust in Polaris is on average 4 times higher than the
Schlegel et al. value for dust in atomic cirrus. This change in dust property
could be interpreted by a growth of fluffy particles within low opacity
molecular cirrus clouds such as Polaris. Our work suggests that variations in
dust emissivity must be taken into account to estimate Av from dust emission
wherever cold infrared emission is present (i.e. molecular clouds).Comment: 9 pages, 7 figures, accepted in A&
Mapping the cold dust temperatures and masses of nearby Kingfish galaxies with Herschel
Taking advantage of the sensitivity and angular resolution of the Herschel
Space Observatory at far-infrared and submm wavelengths, we aim to characterize
the physical properties of cold dust within nearby galaxies and study the
robustness of the parameters we derive using different modified blackbody
models. For a pilot subsample of the KINGFISH program, we perform 2 temperature
fits of the Spitzer and Herschel photometric data (24 to 500um), with a warm
and a cold component, globally and in each resolution element.At global scales,
we observe ranges of values for beta_c(0.8 to 2.5) and Tc(19.1 to 25.1K).We
compute maps of our parameters with beta fixed or free to test the robustness
of the temperature and dust surface density maps we deduce. When the emissivity
is fixed, we observe temperature gradients as a function of radius.When the
emissivity is fitted as a free parameter, barred galaxies tend to have uniform
fitted emissivities.Gathering resolved elements in a Tc-beta_c diagram
underlines an anti-correlation between the two parameters.It remains difficult
to assess whether the dominant effect is the physics of dust grains, noise, or
mixing along the line of sight and in the beam. We finally observe in both
cases that the dust column density peaks in central regions of galaxies and bar
ends (coinciding with molecular gas density enhancements usually found in these
locations).We also quantify how the total dust mass varies with our assumptions
about the emissivity index as well as the influence of the wavelength coverage
used in the fits. We show that modified blackbody fits using a shallow
emissivity (beta_c < 2.0) lead to significantly lower dust masses compared to
the beta_c < 2.0 case, with dust masses lower by up to 50% if beta_c=1.5 for
instance.The working resolution affects our total dust mass estimates: masses
increase from global fits to spatially-resolved fits.Comment: 26 pages, 12 figures, 4 tables, accepted for publication in MNRAS,
2012 June 2
The Current Status and Work of Three Rs Centres and Platforms in Europe*
The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes has given a major push to the formation of Three Rs initiatives in the form of centres and platforms. These centres and platforms are dedicated to the so-called Three Rs, which are the Replacement, Reduction and Refinement of animal use in experiments. ATLA's 50th Anniversary year has seen the publication of two articles on European Three Rs centres and platforms. The first of these was about the progressive rise in their numbers and about their founding history; this second part focuses on their current status and activities. This article takes a closer look at their financial and organisational structures, describes their Three Rs focus and core activities (dissemination, education, implementation, scientific quality/translatability, ethics), and presents their areas of responsibility and projects in detail. This overview of the work and diverse structures of the Three Rs centres and platforms is not only intended to bring them closer to the reader, but also to provide role models and show examples of how such Three Rs centres and platforms could be made sustainable. The Three Rs centres and platforms are very important focal points and play an immense role as facilitators of Directive 2010/63/EU 'on the ground' in their respective countries. They are also invaluable for the wide dissemination of information and for promoting the implementation of the Three Rs in general
The Rise of Three Rs Centres and Platforms in Europe*
Public awareness and discussion about animal experiments and replacement methods has greatly increased in recent years. The term 'the Three Rs', which stands for the Replacement, Reduction and Refinement of animal experiments, is inseparably linked in this context. A common goal within the Three Rs scientific community is to develop predictive non-animal models and to better integrate all available data from in vitro, in silico and omics technologies into regulatory decision-making processes regarding, for example, the toxicity of chemicals, drugs or food ingredients. In addition, it is a general concern to implement (human) non-animal methods in basic research. Toward these efforts, there has been an ever-increasing number of Three Rs centres and platforms established over recent years - not only to develop novel methods, but also to disseminate knowledge and help to implement the Three Rs principles in policies and education. The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes gave a strong impetus to the creation of Three Rs initiatives, in the form of centres and platforms. As the first of a series of papers, this article gives an overview of the European Three Rs centres and platforms, and their historical development. The subsequent articles, to be published over the course of ATLA's 50th Anniversary year, will summarise the current focus and tasks as well as the future and the plans of the Three Rs centres and platforms. The Three Rs centres and platforms are very important points of contact and play an immense role in their respective countries as 'on the ground' facilitators of Directive 2010/63/EU. They are also invaluable for the widespread dissemination of information and for promoting implementation of the Three Rs in general
Planck 2013 results. XI. All-sky model of thermal dust emission
This paper presents an all-sky model of dust emission from the Planck 353, 545, and 857 GHz, and IRAS 100 \u3bcm data. Using a modified blackbody fit to the data we present all-sky maps of the dust optical depth, temperature, and spectral index over the 353-3000 GHz range. This model is a good representation of the IRAS and Planck data at 5\u2032 between 353 and 3000 GHz (850 and 100 \u3bcm). It shows variations of the order of 30% compared with the widely-used model of Finkbeiner, Davis, and Schlegel. The Planck data allow us to estimate the dust temperature uniformly over the whole sky, down to an angular resolution of 5\u2032, providing an improved estimate of the dust optical depth compared to previous all-sky dust model, especially in high-contrast molecular regions where the dust temperature varies strongly at small scales in response to dust evolution, extinction, and/or local production of heating photons. An increase of the dust opacity at 353 GHz, \u3c4353/NH, from the diffuse to the denser interstellar medium (ISM) is reported. It is associated with a decrease in the observed dust temperature, Tobs, that could be due at least in part to the increased dust opacity. We also report an excess of dust emission at H i column densities lower than 1020 cm-2 that could be the signature of dust in the warm ionized medium. In the diffuse ISM at high Galactic latitude, we report an anticorrelation between \u3c4353/NH and Tobs while the dust specific luminosity, i.e., the total dust emission integrated over frequency (the radiance) per hydrogen atom, stays about constant, confirming one of the Planck Early Results obtained on selected fields. This effect is compatible with the view that, in the diffuse ISM, Tobs responds to spatial variations of the dust opacity, due to variations of dust properties, in addition to (small) variations of the radiation field strength. The implication is that in the diffuse high-latitude ISM \u3c4353 is not as reliable a tracer of dust column density as we conclude it is in molecular clouds where the correlation of \u3c4353 with dust extinction estimated using colour excess measurements on stars is strong. To estimate Galactic E(B-V) in extragalactic fields at high latitude we develop a new method based on the thermal dust radiance, instead of the dust optical depth, calibrated to E(B-V) using reddening measurements of quasars deduced from Sloan Digital Sky Survey data. \ua9 2014 ESO
- …