68 research outputs found

    Integrating innovations:a qualitative analysis of referral non-completion among rapid diagnostic test-positive patients in Uganda's human African trypanosomiasis elimination programme

    Get PDF
    BACKGROUND: The recent development of rapid diagnostic tests (RDTs) for human African trypanosomiasis (HAT) enables elimination programmes to decentralise serological screening services to frontline health facilities. However, patients must still undertake multiple onwards referral steps to either be confirmed or discounted as cases. Accurate surveillance thus relies not only on the performance of diagnostic technologies but also on referral support structures and patient decisions. This study explored why some RDT-positive suspects failed to complete the diagnostic referral process in West Nile, Uganda. METHODS: Between August 2013 and June 2015, 85% (295/346) people who screened RDT-positive were examined by microscopy at least once; 10 cases were detected. We interviewed 20 RDT-positive suspects who had not completed referral (16 who had not presented for their first microscopy examination, and 4 who had not returned for a second to dismiss them as cases after receiving discordant [RDT-positive, but microscopy-negative results]). Interviews were analysed thematically to examine experiences of each step of the referral process. RESULTS: Poor provider communication about HAT RDT results helped explain non-completion of referrals in our sample. Most patients were unaware they were tested for HAT until receiving results, and some did not know they had screened positive. While HAT testing and treatment is free, anticipated costs for transportation and ancillary health services fees deterred many. Most expected a positive RDT result would lead to HAT treatment. RDT results that failed to provide a definitive diagnosis without further testing led some to question the expertise of health workers. For the four individuals who missed their second examination, complying with repeat referral requests was less attractive when no alternative diagnostic advice or treatment was given. CONCLUSIONS: An RDT-based surveillance strategy that relies on referral through all levels of the health system is inevitably subject to its limitations. In Uganda, a key structural weakness was poor provider communication about the possibility of discordant HAT test results, which is the most common outcome for serological RDT suspects in a HAT elimination programme. Patient misunderstanding of referral rationale risks harming trust in the whole system and should be addressed in elimination programmes

    Targeted Deletion of Kcne2 Causes Gastritis Cystica Profunda and Gastric Neoplasia

    Get PDF
    Gastric cancer is the second leading cause of cancer death worldwide. Predisposing factors include achlorhydria, Helicobacter pylori infection, oxyntic atrophy and TFF2-expressing metaplasia. In parietal cells, apical potassium channels comprising the KCNQ1 α subunit and the KCNE2 ÎČ subunit provide a K+ efflux current to facilitate gastric acid secretion by the apical H+K+ATPase. Accordingly, genetic deletion of murine Kcnq1 or Kcne2 impairs gastric acid secretion. Other evidence has suggested a role for KCNE2 in human gastric cancer cell proliferation, independent of its role in gastric acidification. Here, we demonstrate that 1-year-old Kcne2−/− mice in a pathogen-free environment all exhibit a severe gastric preneoplastic phenotype comprising gastritis cystica profunda, 6-fold increased stomach mass, increased Ki67 and nuclear Cyclin D1 expression, and TFF2- and cytokeratin 7-expressing metaplasia. Some Kcne2−/−mice also exhibited pyloric polypoid adenomas extending into the duodenum, and neoplastic invasion of thin walled vessels in the sub-mucosa. Finally, analysis of human gastric cancer tissue indicated reduced parietal cell KCNE2 expression. Together with previous findings, the results suggest KCNE2 disruption as a possible risk factor for gastric neoplasia

    Monoclonal antibody therapy efficacy can be boosted by combinations with other treatments: Predictions using an integrated Alzheimer’s Disease Platform

    No full text
    Abstract For many years, clinical research in Alzheimer’s disease (AD) has focused on attempts to identify the most explicit biomarker, namely amyloid beta. Unfortunately, the numerous therapies that have been developed have failed in clinical practice. AD arises as a consequence of multiple factors, and as such it requires a more mechanistic analytical approach than statistical modeling. Quantitative systems pharmacology modeling is a valuable tool for drug development. It utilizes in vitro data for the calibration of parameters, embeds them into physiologically based structures, and explores translation between animals and humans. Such an approach allows for a quantitative study of the dynamics of the interactions between multiple factors or variables. Here, we present an overview of the quantitative translational model in AD, which embraces current preclinical and clinical data. The previously published description of amyloid physiology has been updated and joined with a model for tau pathology and multiple intraneuronal processes responsible for cellular transport, metabolism, or proteostasis. In addition, several hypotheses regarding the best correlates of cognitive deterioration have been validated using clinical data. Here, the amyloid hypothesis was unable to predict the aducanumab clinical trial data, whereas simulations of cognitive impairment coupled with tau seeding or neuronal breakdown (expressed as caspase activity) matched the data. A satisfactory validation of the data from multiple preclinical and clinical studies was followed by an attempt to predict the results of combinatorial treatment with targeted immunotherapy and activation of autophagy using rapamycin. The combination is predicted to yield better efficacy than immunotherapy alone
    • 

    corecore