18 research outputs found

    The use of a multilayer perceptron for detecting new human settlements from a time series of MODIS images

    Get PDF
    This paper presents a novel land cover change detection method that employs a sliding window over hyper-temporal multi-spectral images acquired from the 7 bands of the MODerate-resolution Imaging Spectroradiometer (MODIS) land surface reflectance product. The method uses a Feedforward Multilayer Perceptron (MLP) for supervised change detection that operates on multi-spectral time series extracted with a sliding window from the dataset. The method was evaluated on both real and simulated land cover change examples. The simulated land cover change comprises of concatenated time series that are produced by blending actual time series of pixels from human settlements to those from adjacent areas covered by natural vegetation. The method employs an iteratively retrained MLP to capture all local patterns and to compensate for the time-varying climate in the geographical area. The iteratively retrained MLP was compared to a classical batch mode trained MLP. Depending on the length of the temporal sliding window used, an overall change detection accuracy between 83% and 90% was achieved. It is shown that a sliding window of 6 months using all 7 bands of MODIS data is sufficient to detect land cover change reliably. Window sizes of 18 months and longer provide minor improvements to classification accuracy and change detection performance at the cost of longer time delays.The CSIR Strategic Research Panelhttp://www.elsevier.com/locate/jagai201

    Detecting land cover change using an extended Kalman filter on MODIS NDVI time-series data

    Get PDF
    A method for detecting land cover change using NDVI time series data derived from 500m MODIS satellite data is proposed. The algorithm acts as a per pixel change alarm and takes as input the NDVI time series of a 3x3 grid of MODIS pixels. The NDVI time series for each of these pixels was modeled as a triply (mean, phase and amplitude) modulated cosine function, and an extended Kalman Filter was used to estimate the parameters of the modulated cosine function through time. A spatial comparison between the center pixel of the the 3x3 grid and each of its neighboring pixel’s mean and amplitude parameter sequence was done to calculate a change metric which yields a change or no-change decision after thresholding. Although the development of new settlements is the most prevalent form of land cover change in South Africa, it is rarely mapped and known examples amounts to a limited number of changed MODIS pixels. Therefore simulated change data was generated and used for preliminary optimization of the change detection method. After optimization the method was evaluated on examples of known land cover change in the study area and experimental results indicate a 89% change detection accuracy, while a traditional annual NDVI differencing method could only achieve a 63% change detection accuracy.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=885

    Land cover change detection using autocorrelation analysis on MODIS time-series data : detection of new human settlements in the Gauteng province of South Africa

    Get PDF
    Human settlement expansion is one of the most pervasive forms of land cover change in the Gauteng province of South Africa. A method for detecting new settlement developments in areas that are typically covered by natural vegetation using 500 m MODIS time-series satellite data is proposed. The method is a per pixel change alarm that uses the temporal autocorrelation to infer a change index which yields a change or no-change decision after thresholding. Simulated change data was generated and used to determine a threshold during an off-line optimization phase. After optimization the method was evaluated on examples of known land cover change in the study area and experimental results indicate a 92% change detection accuracy with a 15% false alarm rate. The method shows good performance when compared to a traditional NDVI differencing method that achieved a 75% change detection accuracy with a 24% false alarm rate for the same study area.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?reload=true&punumber=4609443hb2017Electrical, Electronic and Computer Engineerin

    Author correction : roadmap for naming uncultivated archaea and bacteria

    Get PDF
    Correction to: Nature Microbiology https://doi.org/10.1038/s41564-020-0733-x , published online 8 June 2020. In the version of this Consensus Statement originally published, Pablo Yarza was mistakenly not included in the author list. Also, in Supplementary Table 1, Alexander Jaffe was missing from the list of endorsees. These errors have now been corrected and the updated Supplementary Table 1 is available online

    Roadmap for naming uncultivated Archaea and Bacteria

    Get PDF
    The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as ‘type material’, thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity

    Unsupervised land cover change detection : meaningful sequential time series analysis

    Get PDF
    An automated land cover change detection method is proposed that uses coarse spatial resolution hyper-temporal earth observation satellite time series data. The study compared three different unsupervised clustering approaches that operate on short term Fourier transform coefficients computed over subsequences of 8-day composite MODerate-resolution Imaging Spectroradiometer (MODIS) surface reflectance data that were extracted with a temporal sliding window. The method uses a feature extraction process that creates meaningful sequential time series that can be analyzed and processed for change detection. The method was evaluated on real and simulated land cover change examples and obtained a change detection accuracy exceeding 76% on real land cover conversion and more than 70% on simulated land cover conversion

    Improving land cover class separation using an extended Kalman filter on MODIS NDVI time-series data

    No full text
    It is proposed that the normalized difference vegetation index time series derived from Moderate Resolution Imaging Spectroradiometer satellite data can be modeled as a triply (mean, phase, and amplitude) modulated cosine function. Second, a nonlinear extended Kalman filter is developed to estimate the parameters of the modulated cosine function as a function of time. It is shown that the maximum separability of the parameters for natural vegetation and settlement land cover types is better than that of methods based on the fast Fourier transform using data from two study areas in South Africa
    corecore